14.若點(diǎn)P在y=x2上,點(diǎn)Q在x2+(y-3)2=1上,則|PQ|的最小值為( 。
A.$\sqrt{3}$-1B.$\frac{\sqrt{11}}{2}$-1C.2D.$\frac{\sqrt{10}}{2}$-1

分析 求得圓心圓心A(0,3),半徑為1,設(shè)P(x,x2),丨PQ丨=丨AP丨-丨AQ丨=$\sqrt{{x}^{2}+({x}^{2}-3)^{2}}-1$=$\sqrt{({x}^{2}-\frac{5}{2})^{2}+\frac{11}{4}}$,由二次的性質(zhì)即可求得|PQ|的最小值.

解答 解:圓x2+(y-3)2=1的圓心A(0,3),半徑為1,
∵點(diǎn)P在拋物線y=x2上,設(shè)P(x,x2),
∴丨PQ丨=丨AP丨-丨AQ丨=$\sqrt{{x}^{2}+({x}^{2}-3)^{2}}-1$=$\sqrt{{x}^{4}-5{x}^{2}+9}$-1=$\sqrt{({x}^{2}-\frac{5}{2})^{2}+\frac{11}{4}}$,
由二次函數(shù)的性質(zhì)可知:當(dāng)x2=$\frac{5}{2}$時(shí),丨PQ丨取最小值,最小值為:$\frac{\sqrt{11}}{2}$-1,
故選B.

點(diǎn)評(píng) 本題考查圓的方程與拋物線的應(yīng)用,考查二次函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.對(duì)于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個(gè)命題:
①f(x)的單調(diào)遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域?yàn)閇0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內(nèi)有3個(gè)不相等的實(shí)根
其中,真命題是①②.(將真命題的序號(hào)填寫在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x2+2x-a與g(x)=2x+2lnx($\frac{1}{e}$≤x≤e)的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,$\frac{1}{{e}^{2}}$+2]B.[$\frac{1}{{e}^{2}}$+2,e2-2]C.(1,e2-2]D.[e2-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線C:${x^2}-\frac{y^2}{3}=1$的右焦點(diǎn)為F,P是雙曲線C的左支上一點(diǎn),M(0,2),則△PFM周長(zhǎng)最小值為$2+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)y=f(x)在x=1處與直線y=-1相切.
(Ⅰ) 求實(shí)數(shù)a,b的值;
(Ⅱ) 求函數(shù)y=f(x)在$[{\frac{1}{e},e}]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow a=(2k-3,-6)$,$\overrightarrow b=(2,1)$,且$\overrightarrow a⊥\overrightarrow b$,則實(shí)數(shù)k的值為( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.向面積為S的平行四邊形ABCD中任投一點(diǎn)M,則△MCD的面積小于$\frac{S}{3}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)  AD與平面PCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知四棱錐P-ABCD,PA⊥底面ABCD,其三視圖如下,若M是PD的中點(diǎn).
(1)求證:PB∥平面MAC;
(2)求證:CD⊥平面PAD;
(3)求直線CM與平面PAD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案