【題目】已知函數(shù) 處取到極值2.

(1)求的解析式;

(2)若a<e,函數(shù),若對(duì)任意的,總存在為自然對(duì)數(shù)的底數(shù)),使得,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)先對(duì)函數(shù)求導(dǎo),再由函數(shù)處取到極值2,可列出方程組,解方程組即可得出解析式;

(2)(1)可得函數(shù)的定義域?yàn)镽,且函數(shù)為奇函數(shù),進(jìn)而求出的值域,從而可求出的最小值,因此可將函數(shù),若對(duì)任意的,總存在為自然對(duì)數(shù)的底數(shù)),使得的問題轉(zhuǎn)化為上成立的問題,用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性和最值即可求出結(jié)果.

(1)因?yàn)?/span>,所以

處取到極值2,可得

,解得,經(jīng)檢驗(yàn),此時(shí)取得極值,

所以

(2)由(1)知的定義域?yàn)镽,且,所以函數(shù)為奇函數(shù),,

時(shí),,當(dāng)且僅當(dāng)時(shí),取等號(hào);

故函數(shù)的值域?yàn)?/span>,從而,依題意有

函數(shù)的定義域?yàn)?/span>,,

當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)的證,其最小值為,

符合題意;

②當(dāng)時(shí),函數(shù)函數(shù)在區(qū)間上有,單調(diào)遞減;在區(qū)間上有,單調(diào)遞增;所以函數(shù)最小值為,由,得,所以符合題意;

③當(dāng)時(shí),顯然函數(shù)上單調(diào)遞減,其最小值為,不符合題意;

綜上所述,實(shí)數(shù)的取值范圍.為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù) 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.

(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;

(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得 , , 成等差數(shù)列,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)),且兩個(gè)焦點(diǎn)的坐標(biāo)依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,求當(dāng)為何值時(shí),直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說:“乙或丙未獲獎(jiǎng)”;乙說:“甲、丙都獲獎(jiǎng)”;丙說:“我未獲獎(jiǎng)”;丁說:“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )

A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)

C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)

【答案】C

【解析】若甲乙丙同時(shí)獲獎(jiǎng),則甲丙的話錯(cuò),乙丁的話對(duì);符合題意;

若甲乙丁同時(shí)獲獎(jiǎng),則乙的話錯(cuò),甲丙丁的話對(duì);不合題意;

若甲丙丁同時(shí)獲獎(jiǎng),則丙丁的話錯(cuò),甲乙的話對(duì);符合題意;;

若丙乙丁同時(shí)獲獎(jiǎng),則甲乙丙的話錯(cuò),丁的話對(duì);不合題意;

因此乙和丁不可能同時(shí)獲獎(jiǎng),選C.

型】單選題
結(jié)束】
12

【題目】已知當(dāng)時(shí),關(guān)于的方程有唯一實(shí)數(shù)解,則值所在的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù),等式恒成立,若數(shù)列滿足,且,則的值為(

A.4037B.4038C.4027D.4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如下表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

平均每天鍛煉的時(shí)間(分鐘)

總?cè)藬?shù)

20

36

44

50

40

10

請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

從上述200名學(xué)生中,按“課外體育達(dá)標(biāo)”、“課外體育不達(dá)標(biāo)”分層抽樣,抽取4人得到一個(gè)樣本,再?gòu)倪@個(gè)樣本中抽取2人,求恰好抽到一名“課外體育不達(dá)標(biāo)”學(xué)生的概率.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)在政府精準(zhǔn)扶貧的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對(duì)市場(chǎng)進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足Na+20.設(shè)甲合作社的投入為x(單位:萬元),兩個(gè)合作社的總收益為fx)(單位:萬元).

1)當(dāng)甲合作社的投入為25萬元時(shí),求兩個(gè)合作社的總收益;

2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大,最大總收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:;

(Ⅱ)若,AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建國(guó)家級(jí)文明城市,某城市號(hào)召出租車司機(jī)在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機(jī),他們參加“愛心送考”的次數(shù)統(tǒng)計(jì)如圖所示.

(1)求該出租車公司的司機(jī)參加“愛心送考”的人均次數(shù);

(2)從這200名司機(jī)中任選兩人,設(shè)這兩人參加送考次數(shù)之差的絕對(duì)值為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案