【題目】某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計(jì)劃共投入72萬元,全部用于甲、乙兩個(gè)合作社,每個(gè)合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足,N=a+20.設(shè)甲合作社的投入為x(單位:萬元),兩個(gè)合作社的總收益為f(x)(單位:萬元).
(1)當(dāng)甲合作社的投入為25萬元時(shí),求兩個(gè)合作社的總收益;
(2)試問如何安排甲、乙兩個(gè)合作社的投入,才能使總收益最大,最大總收益為多少萬元?
【答案】(1)88.5萬元
(2)該公司在甲合作社投入16萬元,在乙合作社投入56萬元,總收益最大,最大總收益為89萬元
【解析】
根據(jù)題意,當(dāng)甲合作社投入為25萬元時(shí),乙合作社投入為47萬元,分別代入其收益與投入的函數(shù)式,最后求和即可。
首先確定函數(shù)定義域,然后結(jié)合分段函數(shù)的解析式分類討論確定最大收益的安排方法即可得出答案。
解:(1)當(dāng)甲合作社投入為25萬元時(shí),乙合作社投入為47萬元,此時(shí)兩個(gè)個(gè)合作社的總收益為:
=88.5(萬元);
(2)甲合作社的投入為x萬元(15≤x≤57),則乙合作社的投入為72﹣x萬元,
當(dāng)15≤x≤36時(shí),則36≤72﹣x≤57,
f(x)=4+25+(72﹣x)+20=﹣x+4+81.
令t=,得≤t≤6,
則總收益為g(t)=﹣t2+4t+81=﹣(t﹣4)2+89,
顯然當(dāng)t=4時(shí),函數(shù)取得最大值g(t)=89=f(16),
即此時(shí)甲投入16萬元,乙投入56萬元時(shí),總收益最大,最大收益為89萬元
當(dāng)36<x≤57時(shí),則15<72﹣x≤36,
則f(x)=49+(72﹣x)+20=﹣x+105,
則f(x)在(36,57]上單調(diào)遞減,
∴f(x)<f(36)=87.
即此時(shí)甲、乙總收益小于87萬元.
又89>87,
∴該公司在甲合作社投入16萬元,在乙合作社投入56萬元,總收益最大,最大總收益為89萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績的眾數(shù)、均值;
(3)根據(jù)評獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在處取到極值2.
(1)求的解析式;
(2)若a<e,函數(shù),若對任意的,總存在(為自然對數(shù)的底數(shù)),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1≤x≤3},B={x|x>2}.
(Ⅰ)分別求A∩B,(RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn),如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結(jié)合空間向量數(shù)量積的運(yùn)算法則計(jì)算可得,.則,,結(jié)合線面垂直的判斷定理可得平面,即是平面的法向量.
(2)利用平面向量的坐標(biāo)計(jì)算可得,,,則,,.
試題解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【題型】解答題
【結(jié)束】
19
【題目】(1)求圓心在直線上,且與直線相切于點(diǎn)的圓的方程;
(2)求與圓外切于點(diǎn)且半徑為的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=3x.
(1)若f(x)=8,求x的值;
(2)對于任意的x∈[0,2],[f(x)-3]3x+13-m≥0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若是上的有界函數(shù),且的上界為3,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南濮陽市高三一模】已知點(diǎn)在拋物線上, 是拋物線上異于的兩點(diǎn),以為直徑的圓過點(diǎn).
(I)證明:直線過定點(diǎn);
(II)過點(diǎn)作直線的垂線,求垂足的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com