分析 (1)根據$g(x)=f(x)•f({x+\frac{π}{2}})$,當f(x)=cosx+sinx,帶入化簡可得g(x)的解析式;
(2)根據$g(x)=f(x)•f({x+\frac{π}{2}})$,當f(x)=cosx+|sinx|,帶入化簡可得g(x)的解析式;存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,根據象限去掉絕對值,討論g(x)的最大值和最小值可得|x1-x2|的最小值.
解答 解:由$g(x)=f(x)•f({x+\frac{π}{2}})$,
(1)當f(x)=cosx+sinx,
可得g(x)=(cosx+sinx)[cos(x+$\frac{π}{2}$)+sin(x+$\frac{π}{2}$)]
=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.
∴g(x)的解析式為g(x)=cos2x.
(2)f(x)=|sinx|+cosx時,可得g(x)=(|sinx|+cosx)(|cosx|-sinx)=$\left\{\begin{array}{l}{cos2x,2kπ<x≤\frac{π}{2}+2kπ}\\{-sin2x-1,\frac{π}{2}+2kπ<x≤π+2kπ}\\{-cos2x,π+2kπ<x≤\frac{3π}{2}+2kπ}\\{1-sin2x,\frac{3π}{2}+2kπ<x≤2π+2kπ}\end{array}\right.$,k∈Z.
∵存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,
當x1=2kπ+π或2k$π+\frac{π}{2}$時,可得-1≤g(x).
當x2=2kπ+$\frac{7π}{4}$時,可得g(x)≤2.
那么:|x1-x2|=|2kπ+π-(2kπ+$\frac{7π}{4}$)|=$\frac{3π}{4}$
或者:x1-x2|=|2kπ+$\frac{π}{2}$-(2kπ+$\frac{7π}{4}$)|=$\frac{5π}{4}$
∴|x1-x2|的最小值為$\frac{3π}{4}$.
點評 本題考查了三角函數(shù)的恒等變換,三角函數(shù)的性質以及分段函數(shù)最值的討論問題.屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 54 | B. | 55 | C. | 66 | D. | 65 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5π}{8}$ | B. | $\frac{11π}{16}$ | C. | $\frac{9π}{16}$ | D. | $\frac{7π}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com