【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
【答案】(1) 是“局部奇函數(shù)”,理由見解析;(2) ;(3)
【解析】試題分析:
(1)結(jié)合函數(shù)的解析式,當或時, 成立,則是“局部奇函數(shù)”;
(2)由題意換元令結(jié)合對勾函數(shù)的性質(zhì)可得
(3)由定義得有解,結(jié)合函數(shù)的性質(zhì)分類討論:①若則
②若則
故實數(shù)的取值范圍是
試題解析:
(1)由題意得:
當或時, 成立, 是“局部奇函數(shù)”;
(2)由題意得:
在有解,
令則設(shè)在單調(diào)遞減,
在單調(diào)遞增
(3)由定義得
即有解,
設(shè)方程等價于在時有解,
設(shè)對稱軸
①若則即此時
②若則即此時
綜上得: 即實數(shù)的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】班主任為了對本班學生的考試成績進行分析,決定從全班位女同學, 位男同學中隨機
抽取一個容量為的樣本進行分析.
(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;
(Ⅱ)隨機抽取位同學,數(shù)學成績由低到高依次為: ;物理成績由低到高依次為: ,若規(guī)定分(含分)以上為優(yōu)秀,記為這位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將7名應(yīng)屆師范大學畢業(yè)生分配到3所中學任教.
(1)4個人分到甲學校,2個人分到乙學校,1個人分到丙學校,有多少種不同的分配方案?
(2)一所學校去4個人,另一所學校去2個人,剩下的一個學校去1個人,有多少種不同的分配方案?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為調(diào)查高三年級學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人.
(1)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分幾)的把握認為“身高與性別有關(guān)”?
總計 | |||
男生身高 | |||
女神身高 | |||
總計 |
(2)在上述80名學生中,從身高在170-175cm之間的學生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.610 | 0.005 | 0.001 | |
5.024 | 4.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點.
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)若點, 在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 為橢圓的右焦點, , .
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過作,交直線于點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)設(shè)點在上,點在上,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com