【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.

為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為1,2,…,17)建立模型

根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為1,2,…,7)建立模型

.

利用這兩個模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值分別為_____,_____;并且可以判斷利用模型_____得到的預(yù)測值更可靠.

【答案】226.1(億元) 256.5 (億元)

【解析】

根據(jù)兩個模型分別求出年的預(yù)測值,然后對比年的預(yù)測值,進行比較即可確定兩個模型的預(yù)測值的可靠性.

(億元).

(億元).

當年份為

對于模型①:,(億元)

對于模型②:(億元)

所以②的準確度較高,①偏差較大,所以選擇②得到的預(yù)測值更可靠.

本題正確結(jié)果:(億元);(億元);②

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)設(shè)點是線段(不含端點)上一動點,當三棱錐的體積為1時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為2.

(1)求橢圓的標準方程;

(2)設(shè)直線與橢圓交于兩點, 為坐標原點,若,求原點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:的離心率是,分別為橢圓E的左右頂點,B為上頂點,的面積為直線l過點且與橢圓E交于P,Q兩點.

求橢圓E的標準方程;

面積的最大值;

設(shè)直線與直線交于點N,證明:點N在定直線上,并寫出該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若雙曲線與雙曲線有共同的漸近線,且過點.

1)求雙曲線的方程;

2)過的直線與雙曲線的左支交于、兩點,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級),相對應(yīng)空氣質(zhì)量的七個類別,指數(shù)越大,說明污染的情況越嚴重,對人體危害越大.

指數(shù)

級別

類別

戶外活動建議

優(yōu)

可正;顒

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動.

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動.

中度重污染

重污染

健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動.

現(xiàn)統(tǒng)計邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質(zhì)量指數(shù)的平均值;

(3)一般地,當空氣質(zhì)量為輕度污染或輕度污染以上時才會出現(xiàn)霧霾天氣,且此時出現(xiàn)霧霾天氣的概率為,請根據(jù)統(tǒng)計數(shù)據(jù),求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)若函數(shù)的圖象在處的切線與直線垂直,求的值;

(2)關(guān)于的不等式上恒成立,求的取值范圍;

(3)討論函數(shù)極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,,,在邊,關(guān)于直線的對稱點分別為,的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,離心率為,上的一個動點.當的上頂點時,的面積為

1)求的方程;

2)設(shè)斜率存在的直線的另一個交點為.若存在點,使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案