6把椅子排成一排,3人隨機就座,任何兩人不相鄰的坐法種數(shù)為( 。
A、144B、120
C、72D、24
考點:計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:使用“插空法“.第一步,三個人先坐成一排,有
A
3
3
種,即全排,6種;第二步,由于三個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,剩余一張凳子可以選擇三個人的左右共4個空擋,隨便擺放即可,即有
C
1
4
種辦法.根據(jù)分步計數(shù)原理可得結(jié)論.
解答:解:使用“插空法“.第一步,三個人先坐成一排,有
A
3
3
種,即全排,6種;第二步,由于三個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,剩余一張凳子可以選擇三個人的左右共4個空擋,隨便擺放即可,即有
C
1
4
種辦法.根據(jù)分步計數(shù)原理,6×4=24.
故選:D.
點評:本題考查排列知識的運用,考查乘法原理,先排人,再插入椅子是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2cosx部分圖象可以為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點A,B,C是圓O上的三點,線段OC與線段AB交于圓內(nèi)一點P,若
OC
=m
OA
+2m
OB
,
AP
AB
,則λ=( 。
A、
5
6
B、
4
5
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在基本框圖中,矩形表示( 。
A、起止框B、輸入輸出框
C、處理框D、判斷框

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某成品的組裝工序流程圖如圖所示,箭頭上的數(shù)字表示組裝過程中所需要的時間(小時),不同車間可同時工作,同一車間不能同時做兩種或兩種以上的工作,則組裝該產(chǎn)品所需要的最短時間是
 
小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P的直角坐標(biāo)為(-
3
,1),以點P所在的直角坐標(biāo)系的原點為極點,x軸的正方向為極軸,建立極坐標(biāo)系.則點P的極坐標(biāo)為(  )
A、(2,
3
B、(2,
6
C、(2,
π
3
D、(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:
x=2pt2
y=2pt
(t為參數(shù)
)上兩點A、B所對應(yīng)的參數(shù)是t1,t2,且t1+t2=0,則|AB|等于( 。
A、|2p(t1-t2)|
B、2p(t1-t2
C、2p(t12+t22
D、2p(t1-t22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)y=f(x)的圖象是連續(xù)不斷的,若對任意實數(shù)x,存在實常數(shù)t使得f(t+x)=-tf(x)恒成立,則稱f(x)是一個“關(guān)于t函數(shù)”.有下列“關(guān)于t函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個“關(guān)于t函數(shù)”;
②“關(guān)于
1
2
函數(shù)”至少有一個零點;
③f(x)=x2是一個“關(guān)于t函數(shù)”.
其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=loga(x-1)過定點F,F(xiàn)為拋物線y2=2px的焦點,則該拋物線的方程是(  )
A、y2=2x
B、y2=4x
C、y2=8x
D、y2=16x

查看答案和解析>>

同步練習(xí)冊答案