已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,短軸長(zhǎng)為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l過(guò)P(-
1
2
,
1
2
)
且與橢圓相交于A,B兩點(diǎn),當(dāng)P是AB的中點(diǎn)時(shí),求直線l的方程.
分析:(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
,由題意可得
b=c
2b=2
a2=b2+c2
,解出即可;
(Ⅱ)分情況進(jìn)行討論:當(dāng)直線l的斜率存在時(shí),利用平方差法:設(shè)A(x1,y1),B(x2,y2),代入橢圓方程作差,根據(jù)斜率公式、中點(diǎn)坐標(biāo)公式即可求得斜率,再由點(diǎn)斜式即可求得此時(shí)直線方程;當(dāng)直線斜率不存在時(shí),求出點(diǎn)A、B坐標(biāo),檢驗(yàn)即可;
解答:解:設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
.                          
(Ⅰ)由已知可得
b=c
2b=2
a2=b2+c2
a2=2
b2=1
c2=1
.                     
∴所求橢圓方程為
x2
2
+y2=1
.                           
(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x+
1
2
)+
1
2
,A(x1,y1),B(x2,y2),
x
2
1
2
+
y
2
1
=1
,
x
2
2
2
+
y
2
2
=1
,兩式相減得:
y1-y2
x1-x2
=-
1
2
x1+x2
y1+y2

∵P是AB的中點(diǎn),∴
x1+x2
2
=-
1
2
y1+y2
2
=
1
2
,
代入上式可得直線AB的斜率為k=
y1-y2
x1-x2
=
1
2
,
∴直線l的方程為2x-4y+3=0.
當(dāng)直線l的斜率不存在時(shí),將x=-
1
2
代入橢圓方程并解得A(-
1
2
14
4
)
,B(-
1
2
,-
14
4
)

這時(shí)AB的中點(diǎn)為(-
1
2
,0)
,∴x=-
1
2
不符合題設(shè)要求.
綜上,直線l的方程為2x-4y+3=0.
點(diǎn)評(píng):本題考查直線與圓錐曲線的位置關(guān)系、橢圓方程的求解,考查分類討論思想,凡涉及弦中點(diǎn)問(wèn)題一般可考慮“平方差”法,即設(shè)出弦端點(diǎn)坐標(biāo),代入圓錐曲線方程作差,由中點(diǎn)坐標(biāo)公式及斜率公式可得弦斜率及中點(diǎn)坐標(biāo)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
(3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn)M(1,
2
5
5
)
,N(-2,
5
5
)
,若圓C的圓心與橢圓的右焦點(diǎn)重合,圓的半徑恰好等于橢圓的短半軸長(zhǎng),已知點(diǎn)A(x,y)為圓C上的一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O為坐標(biāo)原點(diǎn))的取值范圍;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P(3
2
,4)
到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,焦距為6
3
,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,坐標(biāo)原點(diǎn)O到過(guò)右焦點(diǎn)F且斜率為1的直線的距離為
2
2

(1)求橢圓的方程;
(2)設(shè)過(guò)右焦點(diǎn)F且與坐標(biāo)軸不垂直的直線l交橢圓于P、Q兩點(diǎn),在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案