分析 由題意可得 F2(5,0),F(xiàn)1 (-5,0),余弦定理可得 PF1•PF2=64,由S=$\frac{1}{2}$PF1•PF2sin60°,即可求得△F1PF2的面積.
解答 解:由題意可得 F2(5,0),F(xiàn)1 (-5,0),由余弦定理可得
100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1•PF2,
∴PF1•PF2=64.
△F1PF2的面積S=$\frac{1}{2}$PF1•PF2sin60°=$\frac{1}{2}$×64×$\frac{\sqrt{3}}{2}$=16$\sqrt{3}$.
點評 本題主要考查雙曲線的簡單性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{125π}{6}$ | B. | $\frac{{125\sqrt{2}π}}{3}$ | C. | $\frac{50π}{3}$ | D. | $\frac{25π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{37}$-6 | B. | 10-3$\sqrt{5}$ | C. | 8-$\sqrt{37}$ | D. | 2$\sqrt{5}$-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,1] | B. | (-2,1] | C. | [-3,3) | D. | (-2,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 31 | C. | -33 | D. | -31 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<0 | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com