16.三個(gè)數(shù)a=(-0.3)0,b=0.32,c=20.3的大小關(guān)系為( 。
A.a<b<0B.a<c<bC.b<c<aD.b<a<c

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)比較a,b,c和1的大小即可.

解答 解:a=(-0.3)0=1,
b=0.32=0.09<1,
c=20.3>1,
故b<a<c,
故選:D.

點(diǎn)評(píng) 本題考查了指數(shù)的運(yùn)算,考查函數(shù)值的大小比較,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.P為雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點(diǎn),F(xiàn)1、F2為左、右焦點(diǎn),若∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.-1,a1,a2,-4成等差數(shù)列,-1,b,-4成等比數(shù)列,則$\frac{{{a_2}+{a_1}}}$=$±\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在(0,+∞)上的函數(shù)f(x)滿足:(1)當(dāng)$x∈[{\frac{1}{2},1})$時(shí),f(x)=$\frac{1}{2}-|{2x-\frac{3}{2}}$|;(2)f(2x)=2f(x),則關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,…,xn…x2n,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n-1+x2n=3×(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求與橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$有相同的焦點(diǎn),且兩準(zhǔn)線間的距離為$\frac{10}{3}$的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=ax2+bx+3在(-∞,-1]上是增函數(shù),在[-1,+∞)上是減函數(shù),則(  )
A.b>0且a<0B.b=2a<0C.b=2a>0D.b=-2a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|y=lg(x-1)},集合B={y|y=-x2+2},則A∩B等于( 。
A.(1,2)B.(1,2]C.[1,2)D.[1,2]

查看答案和解析>>

同步練習(xí)冊答案