14.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)的圖象在它與x軸異于原點的交點M處的切線為l1,g(x-1)的圖象在它與x軸的交點N處的切線為l2,且l1與l2平行.
(1)求a的值;
(2)已知t∈R,求函數(shù)y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);
(3)令F(x)=g(x)+g′(x),給定x1,x2∈(1,+∞),x1<x2,對于兩個大于1的正數(shù)α,β,存在實數(shù)m滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,并且使得不等式|F(α)-F(β)|<|F(x1)-F(x2)|恒成立,求實數(shù)m的取值范圍..

分析 (1)利用導數(shù)的幾何意義,分別求兩函數(shù)在與兩坐標軸的交點處的切線斜率,令其相等解方程即可得a值;
(2)令u=xlnx,再研究二次函數(shù)u2+(2t-1)u+t2-t圖象是對稱軸u=$\frac{1-2t}{2}$,開口向上的拋物線,結(jié)合其性質(zhì)求出最值;
(3)先由題意得到F(x)=g(x)+g′(x)=lnx+$\frac{1}{x}$,再利用導數(shù)工具研究所以F(x)在區(qū)間(1,+∞)上單調(diào)遞增,得到當x≥1時,F(xiàn)(x)≥F(1)>0,下面對m進行分類討論:①當m∈(0,1)時,②當m≤0時,③當m≥1時,結(jié)合不等式的性質(zhì)即可求出a的取值范圍.

解答 解:(1)y=f(x)圖象與x軸異于原點的交點M(a,0),f′(x)=2x-a,
y=g(x-1)=ln(x-1)圖象與x軸的交點N(2,0),
g′(x-1)=$\frac{1}{x-1}$由題意可得k l1=k l2,即a=1;
(2)y=f[xg(x)+t]=[xlnx+t]2-(xlnx+t)
=(xlnx)2+(2t-1)(xlnx)+t2-t,
令u=xlnx,在 x∈[1,e]時,u′=lnx+1>0,
∴u=xlnx在[1,e]單調(diào)遞增,0≤u≤e,
u2+(2t-1)u+t2-t圖象的對稱軸u=$\frac{1-2t}{2}$,拋物線開口向上,
①當u=$\frac{1-2t}{2}$≤0,即t≥$\frac{1}{2}$時,y最小=t2-t,
②當u=$\frac{1-2t}{2}$≥e,即t≤$\frac{1-2e}{2}$時,y最小=e2+(2t-1)e+t2-t,
③當0<$\frac{1-2t}{2}$<e,即 $\frac{1-2e}{2}$<t<$\frac{1}{2}$時,
y最小=y|u=$\frac{1-2t}{2}$=-$\frac{1}{4}$;
(3)F(x)=g(x)+g′(x)=lnx+$\frac{1}{x}$,
F′(x)=$\frac{x-1}{{x}^{2}}$≥0,
所以F(x)在區(qū)間(1,+∞)上單調(diào)遞增,
∴當x≥1時,F(xiàn)(x)≥F(1)>0,
①當m∈(0,1)時,有,
α=mx1+(1-m)x2>mx1+(1-m)x1=x1
α=mx1+(1-m)x2<mx2+(1-m)x2=x2,
得α∈(x1,x2),同理β∈(x1,x2),
∴由f(x)的單調(diào)性知  0<F(x1)<F(α)、f(β)<f(x2),
從而有|F(α)-F(β)|<|F(x1)-F(x2)|,符合題設(shè).
②當m≤0時,
α=mx1+(1-m)x2≥mx2+(1-m)x2=x2
β=mx2+(1-m)x1≤mx1+(1-m)x1=x1,
由f(x)的單調(diào)性知,
F(β)≤F(x1)<f(x2)≤F(α),
∴|F(α)-F(β)|≥|F(x1)-F(x2)|,與題設(shè)不符,
③當m≥1時,同理可得α≤x1,β≥x2
得|F(α)-F(β)|≥|F(x1)-F(x2)|,與題設(shè)不符,
∴綜合①、②、③得 m∈(0,1).

點評 本小題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導數(shù)研究曲線上某點切線方程、利用導數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力、化歸與轉(zhuǎn)化思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖點G是三角形ABO的重心,PQ是過G的分別交OA,OB于P,Q的一條線段,且OP=mOA,OQ=nOB,(m,n∈R).求證$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在極坐標系中,曲線C1:ρsin2θ=4cosθ,以極點為坐標原點,極軸為軸正半軸建立直角坐標系xOy,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求C1、C2的直角坐標方程;
(2)若曲線C1與曲線C2交于A、B兩點,且定點P的坐標為(2,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知$sin(\frac{π}{2}-α)=\frac{3}{5}$,則cos(π+α)的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取3件,則至少有2件一等品的概率是( 。
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow a•\overrightarrow b=-\frac{1}{2},\left?{\overrightarrow a-\overrightarrow c,\overrightarrow b-\overrightarrow c}\right>={60^0}$,則$\overrightarrow c$的模長的最大值為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E、F分別為BC、CC1的中點,則直線EF與平面BB1D1D所成角的正弦值為(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x|0<x2<5},B={x|-3<x<2,x∈Z},則A∩B=(  )
A.{-2,-1,0,1}B.{-2,-1,1,2}C.{-2,-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.雙曲線$\frac{{x}^{2}}{4}$-y=1的頂點到其漸近線的距離等于(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

同步練習冊答案