【題目】已知集合A={x|x<2},B={x|3﹣2x>0},則( 。
A.A∩B={x|x< }
B.A∩B=?
C.A∪B={x|x< }
D.AUB=R

【答案】A
【解析】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x< },
∴A∩B={x|x< },故A正確,B錯(cuò)誤;
A∪B={x||x<2},故C,D錯(cuò)誤;
故選:A
【考點(diǎn)精析】認(rèn)真審題,首先需要了解集合的并集運(yùn)算(并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立),還要掌握集合的交集運(yùn)算(交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.
(Ⅰ)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
(Ⅱ)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的所有棱長都相等,的中點(diǎn),則,所成角的正弦值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓)的一個(gè)焦點(diǎn),過原點(diǎn)的直線與橢圓交于、兩點(diǎn),且,△的面積為。

(1)求橢圓的離心率;

(2)若,過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)

(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P﹣ABCD的體積為 ,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考察下列命題:其中正確的命題有 ( )

(1)擲兩枚硬幣,可能出現(xiàn)“兩個(gè)正面”、“兩個(gè)反面”、“一正一反”3種結(jié)果;

(2)某袋中裝有大小均勻的三個(gè)紅球、二個(gè)黑球、一個(gè)白球,那么每種顏色的球被摸到的可能性相同;(3)從中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同;

(4)分別從3個(gè)男同學(xué)、4個(gè)女同學(xué)中各選一個(gè)作代表,那么每個(gè)同學(xué)當(dāng)選的可能性相同;

(5)5人抽簽,甲先抽,乙后抽,那么乙與甲抽到某號中獎(jiǎng)簽的可能性肯定不同.

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊答案