函數(shù)f(x)=x2+(2a2-6a)x+2在區(qū)間(-∞,2]上單調(diào)遞減,那么實(shí)數(shù)a的取值范圍( 。
A、[1,+∞)
B、(-∞,2]
C、[1,2]
D、(-∞,1]∪[2,+∞)
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)=x2+(2a2-6a)x+2在區(qū)間(-∞,2]上單調(diào)遞減,則根據(jù)函數(shù)的圖象知:對(duì)稱(chēng)軸必在x=2的右邊,即-(a2-3a)≥2,求出a的范圍.
解答: 解:∵f(x)=x2+(2a2-6a)x+2在區(qū)間(-∞,2]上單調(diào)遞減,
對(duì)稱(chēng)軸為 x=-(a2-3a),
∴-(a2-3a)≥2,
故1≤a≤2
故選C.
點(diǎn)評(píng):本題考查了解決二次函數(shù)的性質(zhì)問(wèn)題,一般考慮二次函數(shù)的對(duì)稱(chēng)軸與區(qū)間的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱(chēng)集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=
1
x
};、贛={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x}; ④M={(x,y)|y=ex-2};
⑤M={(x,y)|y=(x+y)
1
2
};其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( 。
A、①②③B、②④⑤
C、①③④D、②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),如[1.8]=1,[-1.2]=-2.x0是函數(shù)f(x)=lnx-
2
x
的零點(diǎn),則[x0]等于(  )
A、2B、1C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列幾個(gè)圖形中,可以表示函數(shù)關(guān)系y=f(x)的一個(gè)圖是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)是增函數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-x-1;
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象(不用列表),并指出它的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x,y滿(mǎn)足約束條件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為( 。
A、
1
2
或-1
B、1或-
1
2
C、2或1
D、2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e|x|+x2(e為自然對(duì)數(shù)的底數(shù)),且f(3a-2)>f(a-1),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖
(Ⅰ)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高; 
(Ⅱ)計(jì)算甲班的樣本方差
(Ⅲ)現(xiàn)從甲乙兩班同學(xué)中各選取兩名身高不低于170cm的同學(xué),參加四項(xiàng)不同的體育項(xiàng)目,求有多少種不同的安排方法?

查看答案和解析>>

同步練習(xí)冊(cè)答案