分析:根據(jù)函數(shù)的解析式,分類討論,當(dāng)x≤0時,f(x)=x+cosx,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性,根據(jù)f(0)=1>0,x→-∞時,f(x)→-∞,從而求得函數(shù)零點(diǎn)的個數(shù);當(dāng)x>0時,f(x)=
x3-4x+1,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性和極值,根據(jù)f(2)=
- 7<0,f(0)=1>0,x→+∞時,f(x)→+∞,從而求得函數(shù)零點(diǎn)的個數(shù).
解答:解:當(dāng)x≤0時,f(x)=x+cosx,
f′(x)=1-sinx≥0,
∴f(x)在(-∞,0)上單調(diào)遞增,且f(0)=1>0,x→-∞時,f(x)→-∞,
∴f(x)在(-∞,0)上有一個零點(diǎn);
當(dāng)x>0時,f(x)=
x3-4x+1,
f′(x)=x
2-4=0,
解得x=2或x=-2(舍),
∴當(dāng)0<x<2時,f′(x)<0,當(dāng)x>2時,f′(x)>0,
∴f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
且f(2)=
- 7<0,f(0)=1>0,x→+∞時,f(x)→+∞,
∴f(x)在(0,+∞)上有兩個零點(diǎn);
綜上函數(shù)f(x)=
| x+cosx,(x≤0) | x3-4x+1,(x>0) |
| |
的零點(diǎn)個數(shù)為3個,
故選B.
點(diǎn)評:此題考查了函數(shù)零點(diǎn)問題,函數(shù)的零點(diǎn)個數(shù)問題實際上就是函數(shù)圖象與x軸的交點(diǎn)個數(shù)問題,體現(xiàn)了轉(zhuǎn)化的思想,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,從而確定函數(shù)的零點(diǎn)個數(shù)等基礎(chǔ)題,同時考查了知識的靈活運(yùn)用和運(yùn)算能力.