函數(shù)f(x)=
x+cosx,(x≤0)
1
3
x3-4x+1,(x>0)
的零點(diǎn)個數(shù)為( 。
A、4B、3C、2D、無數(shù)個
分析:根據(jù)函數(shù)的解析式,分類討論,當(dāng)x≤0時,f(x)=x+cosx,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性,根據(jù)f(0)=1>0,x→-∞時,f(x)→-∞,從而求得函數(shù)零點(diǎn)的個數(shù);當(dāng)x>0時,f(x)=
1
3
x3-4x+1
,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性和極值,根據(jù)f(2)=
8
3
- 7
<0,f(0)=1>0,x→+∞時,f(x)→+∞,從而求得函數(shù)零點(diǎn)的個數(shù).
解答:解:當(dāng)x≤0時,f(x)=x+cosx,
f′(x)=1-sinx≥0,
∴f(x)在(-∞,0)上單調(diào)遞增,且f(0)=1>0,x→-∞時,f(x)→-∞,
∴f(x)在(-∞,0)上有一個零點(diǎn);
當(dāng)x>0時,f(x)=
1
3
x3-4x+1
,
f′(x)=x2-4=0,
解得x=2或x=-2(舍),
∴當(dāng)0<x<2時,f′(x)<0,當(dāng)x>2時,f′(x)>0,
∴f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
且f(2)=
8
3
- 7
<0,f(0)=1>0,x→+∞時,f(x)→+∞,
∴f(x)在(0,+∞)上有兩個零點(diǎn);
綜上函數(shù)f(x)=
x+cosx,(x≤0)
1
3
x3-4x+1,(x>0)
的零點(diǎn)個數(shù)為3個,
故選B.
點(diǎn)評:此題考查了函數(shù)零點(diǎn)問題,函數(shù)的零點(diǎn)個數(shù)問題實際上就是函數(shù)圖象與x軸的交點(diǎn)個數(shù)問題,體現(xiàn)了轉(zhuǎn)化的思想,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,從而確定函數(shù)的零點(diǎn)個數(shù)等基礎(chǔ)題,同時考查了知識的靈活運(yùn)用和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)(x∈R)為奇函數(shù),且存在反函數(shù)f-1(x)(與f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,則下列關(guān)于函數(shù)F(x)的奇偶性的說法中正確的是(  )
A、F(x)是奇函數(shù)非偶函數(shù)
B、F(x)是偶函數(shù)非奇函數(shù)
C、F(x)既是奇函數(shù)又是偶函數(shù)
D、F(x)既非奇函數(shù)又非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)、g(x),下列說法正確的是( 。
A、f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)B、f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)C、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)D、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是


  1. A.
    [-5,5]
  2. B.
    [-數(shù)學(xué)公式,數(shù)學(xué)公式]
  3. C.
    [-數(shù)學(xué)公式,數(shù)學(xué)公式]
  4. D.
    [-數(shù)學(xué)公式,數(shù)學(xué)公式]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步練習(xí)冊答案