19.拋物線x2=2my(m>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,若∠AFB=120°,則雙曲線的離心率為3.

分析 求出,F(xiàn)(0,$\frac{m}{2}$),準(zhǔn)線方程為y=-$\frac{m}{2}$,代入雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$,可得x=±$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$,利用準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,∠AFB=120°,得出$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$=$\sqrt{3}m$,求出m,n的關(guān)系,即可得出結(jié)論.

解答 解:由題意,F(xiàn)(0,$\frac{m}{2}$),準(zhǔn)線方程為y=-$\frac{m}{2}$,
代入雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$,可得x=±$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$,
∵準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,∠AFB=120°,
∴$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$=$\sqrt{3}m$,
∴m=2$\sqrt{2}$n,
∴雙曲線的離心率為$\frac{\sqrt{8{n}^{2}+{n}^{2}}}{m}$=3.
故答案為3.

點(diǎn)評(píng) 本題考查拋物線、雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,確定m,n的關(guān)系是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知函數(shù)f(x)=lnx+x2-3x+2.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意n∈N*,都有l(wèi)n(1+n)>$\sum_{i=1}^{n}\frac{1-1}{{i}^{2}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)P(t,$\frac{1}{2}$)在橢圓C:$\frac{{x}^{2}}{2}$+y2=1內(nèi),過(guò)P的直線l與橢圓C相交于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)是否存在實(shí)數(shù)t,使直線l和直線OP的傾斜角互補(bǔ)?若存在,求出t的值,若不存在,試說(shuō)明理由;
(Ⅱ)求△OAB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(3,-1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),則實(shí)數(shù)m=( 。
A.2或-4B.2C.-$\frac{1}{4}$或$\frac{1}{2}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0處取得最小值.
(1)求f(x0)-g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)-g(x),h(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若集合M={x|x2-x<0},N={y|y=ax(a>0,a≠1)},R表示實(shí)數(shù)集,則下列選項(xiàng)錯(cuò)誤的是( 。
A.M∩∁RN=φB.M∪N=RC.RM∪N=RD.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知全集為R,集合A={x|x2-2x<3},B={x|x>2},則A∩(∁RB)( 。
A.{x|-1<x<2}B.{x|2<x<3}C.{x|x<3}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2sinx•sin(x+$\frac{π}{3}$).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)銳角△ABC的角A,B,C所對(duì)邊分別是a,b,c,角A的平分線交BC于D,直線x=A是函數(shù)f(x)圖象的一條對(duì)稱軸,AD=$\sqrt{2}$BD=2,求邊a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某省電視臺(tái)為了解該省衛(wèi)視一檔成語(yǔ)類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:
其中一個(gè)數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)成語(yǔ)知識(shí)的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語(yǔ)知識(shí)的時(shí)間y(單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如表所示)
年齡x(歲)20304050
周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間y(小時(shí))2.5344.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測(cè)年齡為55歲觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案