分析 求出,F(xiàn)(0,$\frac{m}{2}$),準(zhǔn)線方程為y=-$\frac{m}{2}$,代入雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$,可得x=±$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$,利用準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,∠AFB=120°,得出$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$=$\sqrt{3}m$,求出m,n的關(guān)系,即可得出結(jié)論.
解答 解:由題意,F(xiàn)(0,$\frac{m}{2}$),準(zhǔn)線方程為y=-$\frac{m}{2}$,
代入雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$,可得x=±$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$,
∵準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,∠AFB=120°,
∴$\sqrt{{m}^{2}+\frac{{m}^{4}}{4{n}^{2}}}$=$\sqrt{3}m$,
∴m=2$\sqrt{2}$n,
∴雙曲線的離心率為$\frac{\sqrt{8{n}^{2}+{n}^{2}}}{m}$=3.
故答案為3.
點(diǎn)評(píng) 本題考查拋物線、雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,確定m,n的關(guān)系是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2或-4 | B. | 2 | C. | -$\frac{1}{4}$或$\frac{1}{2}$ | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M∩∁RN=φ | B. | M∪N=R | C. | ∁RM∪N=R | D. | M∩N=M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x<2} | B. | {x|2<x<3} | C. | {x|x<3} | D. | {x|-1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年齡x(歲) | 20 | 30 | 40 | 50 |
周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com