【題目】在四棱錐中,底面為平行四邊形, , , , .
(Ⅰ)證明: 平面;
(Ⅱ)求點到平面的距離.
【答案】(1)詳見解析;(2)
【解析】試題分析:(Ⅰ)首先利用正弦定理求得,由此可推出,然后利用勾股定理推出,從而使問題得證;(Ⅱ)利用等積法將問題轉化為求解即可.
試題解析:(Ⅰ)證明:在中, ,由已知, , ,
解得,所以,即,可求得.
在中,
∵, , ,
∴,∴,
∵平面, ,∴平面.
(Ⅱ)由題意可知, 平面,則到面的距離等于到面的距離,
在中,易求,
,
且, 面,
則,即,則,
即點到平面的距離為.
點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型,(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,已知矩形中, 為上一點,且,垂足為,現(xiàn)將矩形沿對角線折起,得到如圖乙所示的三棱錐.
(Ⅰ)在圖乙中,若,求的長度;
(Ⅱ)當二面角等于時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前項n和為Sn , 且3Sn=4an﹣4.又數(shù)列{bn}滿足bn=log2a1+log2a2+…+log2an .
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若 ,求使得不等式 恒成立的實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,則實數(shù)a= , b= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xm﹣ ,且f(3)= .
(1)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性.
(2)證明函數(shù)f(x)在(0,+∞)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(Ⅰ)命題“ ”為假命題,求實數(shù)a的取值范圍;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com