13.設(shè)直線y=kx+3與y=$\frac{1}{k}$x-5的交點(diǎn)在直線y=x上,求實(shí)數(shù)k的值.

分析 聯(lián)立$\left\{\begin{array}{l}{y=kx+3}\\{y=\frac{1}{k}x-5}\end{array}\right.$,解得x,y(k≠±1).代入y=x,解出即可.

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=kx+3}\\{y=\frac{1}{k}x-5}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{-8k}{{k}^{2}-1}}\\{y=\frac{-5{k}^{2}-3}{{k}^{2}-1}}\end{array}\right.$(k≠±1).
代入y=x,可得8k=5k2-3,
化為5k2-8k+3=0,
解得k=$\frac{3}{5}$.

點(diǎn)評 本題考查了直線的交點(diǎn)、一元二次方程的解法,考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{m+ln(2x+1)}{2x+1}$.(m∈R)
(1)若曲線y=f(x)在x=0處的切線與直線x-2y-2016=0垂直,求函數(shù)f(x)的極值;
(2)若關(guān)于t的函數(shù)F(t)=lnt+t2-3t-$\frac{1}{2016}{(2x+1)^2}$f′(x)在$x∈[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$時恒有3個不同的零點(diǎn),試求實(shí)數(shù)m的范圍.(f′(x)為f(x)的導(dǎo)函數(shù),e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等比數(shù)列{an}中,若an>0,且a3,a7是x2-32x+64=0的兩根,則log2a1+log2a2+log2a3+…+log2a9=( 。
A.27B.36C.18D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系中,角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊過點(diǎn)P(-2,1),則sin2α的值為$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+|x-2a|,其中a>0
(1)當(dāng)a=1時,求f(x)在[0,+∞)上的最小值;
(2)若函數(shù)g(x)=f(x)-b在[0,+∞)上有兩個零點(diǎn),求實(shí)數(shù)b的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某城鎮(zhèn)的人口數(shù)量不斷增長,每年以2%的速度遞增,假設(shè)該城鎮(zhèn)設(shè)原來人口為1萬
(1)求該城鎮(zhèn)人口數(shù)量隨時間增長的函數(shù)關(guān)系式;
(2)求10年后該城鎮(zhèn)的人口數(shù).(精確到0.001萬)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知α、β∈(0,$\frac{π}{2}$)且sin(α+2β)=$\frac{1}{3}$.若α+β=$\frac{2π}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線y=kx-k+1與橢圓C:x2+my2=3恒有公共點(diǎn),則m的取值范圍是0<m<1或1<m≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出以下命題:
①“a=0”是“函數(shù)f(x)=x2+ax,(x∈R)為偶函數(shù)的充要條件”;
②?x∈N,使x2≤x;
③命題“若α是銳角,則sinα>0”的否命題
其中說法正確的是①②.

查看答案和解析>>

同步練習(xí)冊答案