函數(shù)f(x)=ln x的圖像與函數(shù)g(x)=x2-4x+4的圖像的交點個數(shù)為(  )
A.0B.1C.2D.3
C
方法一,作出函數(shù)f(x)=ln x,g(x)=x2-4x+4的圖像如圖所示,則兩個函數(shù)圖像的交點個數(shù)為2,故選C.
方法二,構(gòu)造函數(shù)φ(x)=ln x-x2+4x-4,則φ′(x)=-2x+4=-.又因為方程2x2-4x-1=0的大于零的根的是x0,且在(0,x0)上φ′(x)>0,在(x0,+∞)上φ′(x)<0,所以函數(shù)φ(x)至多有兩個零點.由于φ(1)=-1<0,φ(2)=ln 2>0,φ(4)=ln 4-4<0,則函數(shù)φ(x)有兩個不同的零點.故函數(shù)f(x)=ln x的圖像與函數(shù)g(x)=x2-4x+4的圖像的交點個數(shù)為2.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)命題P:函數(shù)在區(qū)間[-1,1]上單調(diào)遞減;
命題q:函數(shù)的定義域為R.若命題p或q為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=2xf′(e)+ln x,則f′(e)=(  )
A.1 B.-1C.-e-1D.-e

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線f(x)=ax2+lnx存在垂直于y軸的切線,則實數(shù)a的取值范圍是    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)在R上的導函數(shù)為f′(x),且2f(x)+xf′(x)>x2,下面不等式在R上恒成立的是(  )
A.f(x)>0 B.f(x)<0
C.f(x)>x D.f(x)<x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=ax-x3,對區(qū)間(0,1)上的任意x1,x2,且x1<x2,都有f(x2)-f(x1)>x2-x1成立,則實數(shù)a的取值范圍為(  )
A.(0,1)B.[4,+∞)C.(0,4]D.(1,4]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)yf(x)在x=1處取得極值,且曲線yf(x)在點(0,f(0))處的切線與直線2xy-3=0平行,求a的值;
(2)若b,試討論函數(shù)yf(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)有兩個極值點,則實數(shù)的取值范圍是    ( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案