14.古有蘇秦、張儀唇槍舌劍馳騁于亂世之秋,今看我一中學(xué)子論天、論地、指點(diǎn)江山.現(xiàn)在高二某班需從甲、乙、丙、丁、戊五位同學(xué)中,選出四位同學(xué)組成重慶一中“口才季”中的一個辯論隊(duì),根據(jù)他們的文化、思維水平,分別擔(dān)任一辯、二辯、三辯、四辯,其中四辯必須由甲或乙擔(dān)任,而丙與丁不能擔(dān)任一辯,則不同組隊(duì)方式有( 。
A.12種B.16種C.20種D.24種

分析 分兩類,若甲乙有1人擔(dān)任一辯,若甲乙沒有人擔(dān)任一辯,則戊一定一辯,根據(jù)分類計(jì)數(shù)原理可得

解答 解:若甲乙有1人擔(dān)任一辯,則有A22A32=12種,
若甲乙沒有人擔(dān)任一辯,則戊一定一辯,則有A21A32=12種,
根據(jù)分類計(jì)數(shù)原理可得共有12+12=24種,
故選:D.

點(diǎn)評 本題考查排列、組合的應(yīng)用,首先注意特殊問題的處理方法,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某冰淇淋店要派車到100千米外的冷飲加工廠原料,再加工成冰淇淋后售出,已知汽車每小時的運(yùn)行成本F(單位:元)與其自重m(包括車子、駕駛員及所載貨物等的質(zhì)量,單位:千克)和車速v(單位:千米/小時)之間滿足關(guān)系式:$F=\frac{1}{1600}m{v^2}$.在運(yùn)輸途中,每千克冷飲每小時的冷藏費(fèi)為10元,每千克冷飲經(jīng)過冰淇淋店再加工后,可獲利100元.若汽車重量(包括駕駛員等,不含貨物)為1.3噸,最大載重為1噸.汽車來回的速度為v(單位:千米/小時),且最大車速為80千米,一次進(jìn)貨x千克,而且冰淇淋供不應(yīng)求.
(1)求冰淇淋店進(jìn)一次貨,經(jīng)加工售賣后所得凈利潤w與車速v和進(jìn)貨量x之間的關(guān)系式;
(2)每次至少進(jìn)貨多少千克,才能使得銷售后不會虧本(凈利潤w≥0)?
(3)當(dāng)一次進(jìn)貨量x與車速v分別為多少時,能使得冰淇淋店有最大凈利潤?并求出最大值.(提示:${({\sqrt{x+b}})^′}=\frac{1}{{2\sqrt{x+b}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓A:x2+y2+2x-15=0,過點(diǎn)B(1,0)作直線l(與x軸不重合)交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E.
(Ⅰ) 求點(diǎn)E的軌跡方程;
(Ⅱ)動點(diǎn)M在曲線E上,動點(diǎn)N在直線$l:y=2\sqrt{3}$上,若OM⊥ON,求證:原點(diǎn)O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱柱ABC-A1B1C1中,AB=AC=CC1,平面BAC1⊥平面ACC1A1,∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求證:BO⊥平面AA1C1C;
(Ⅱ)求二面角A-BC1-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從5名男公務(wù)員和4名女公務(wù)員中選出3人,分別派到西部的三個不同地區(qū),要求3人中既有男公務(wù)員又有女公務(wù)員,則不同的選派方法種數(shù)是420.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,直三棱柱的主視圖是邊長為2的正方形,且俯視圖為一個等邊三角形,則該三棱柱的左視圖面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax+logax(a>0,且a≠1).
(1)若f(5a-3)>f(3a),求實(shí)數(shù)a的取值范圍;
(2)若a=2
①求證:f(x)的零點(diǎn)在($\frac{1}{4}$,$\frac{1}{2}$)上;
②求證:對任意λ>0,存在μ>0,使f(x)<0在(0,λμ)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,則$3\overrightarrow a-2\overrightarrow b$=( 。
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$(t為參數(shù))被圓$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$(θ為參數(shù))所截得的弦長為$2\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊答案