分析 利用同角三角函數(shù)的基本關(guān)系、二倍角公式求得sin2α=2sinαcosα 的值以及cosα的值,從而求得cos2α的值.
解答 解:∵sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),即sinα-cosα=$\frac{1}{2}$①,平方可得1-2sinαcosα=$\frac{1}{4}$,
則sin2α=2sinαcosα=$\frac{3}{4}$>0,∴α為銳角,
∴sinα+cosα=$\sqrt{{(sinα+cosα)}^{2}}$=$\sqrt{1+sin2α}$=$\sqrt{1+\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$ ②,
由①②求得cosα=$\frac{\sqrt{7}-1}{4}$,∴cos2α=2cos2α-1=-$\frac{\sqrt{7}}{4}$,
故答案為:$\frac{3}{4}$;-$\frac{\sqrt{7}}{4}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ④ | B. | ②③ | C. | ①④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2-x | B. | y=x-$\frac{1}{x}$ | C. | y=-$\frac{1}{{x}^{2}}$ | D. | y=-tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<-1 | B. | k≤-1 | C. | k>2 | D. | k≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com