分析 由題意求出A,T,利用周期公式求出ω,利用當x=$\frac{π}{6}$時取得最大值2,求出φ,得到函數的解析式,即可得解.
解答 解:由題意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,可得:ω=$\frac{2π}{π}$=2,
由于:當x=$\frac{π}{6}$時取得最大值2,
所以:2=2sin(2×$\frac{π}{6}$+φ),可得:2×$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
由于:|φ|<π,
所以:φ=$\frac{π}{6}$,
函數f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$).
故答案為:$y=2sin(2x+\frac{π}{6})$.
點評 本題是基礎題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數的周期的求法,考查計算能力,?碱}型.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{3}-{y^2}=1$和 $\frac{y^2}{9}-\frac{x^2}{3}=1$ | B. | $\frac{x^2}{3}-{y^2}=1$和 ${y^2}-\frac{x^2}{3}=1$ | ||
C. | ${y^2}-\frac{x^2}{3}=1$和 ${x^2}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{3}-{y^2}=1$和$\frac{y^2}{3}-\frac{x^2}{9}=-1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=$\frac{2}{x}$ | B. | y=3-sinx | C. | y=-tanx | D. | y=-2x3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com