精英家教網 > 高中數學 > 題目詳情
17.已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象(如圖所示),則f(x)的解析式為$y=2sin(2x+\frac{π}{6})$.

分析 由題意求出A,T,利用周期公式求出ω,利用當x=$\frac{π}{6}$時取得最大值2,求出φ,得到函數的解析式,即可得解.

解答 解:由題意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,可得:ω=$\frac{2π}{π}$=2,
由于:當x=$\frac{π}{6}$時取得最大值2,
所以:2=2sin(2×$\frac{π}{6}$+φ),可得:2×$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
由于:|φ|<π,
所以:φ=$\frac{π}{6}$,
函數f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$).
故答案為:$y=2sin(2x+\frac{π}{6})$.

點評 本題是基礎題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數的周期的求法,考查計算能力,?碱}型.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),則sin2α=$\frac{3}{4}$,cos2α=-$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知關于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有兩個不相等實根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有實數根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知扇形的弧長為6,圓心角弧度數為3,則其面積為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知函數$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x,x≥1}\\{1-3x,x<1}\end{array}}\right.$,若f[f(x0)]=-2,則x0的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數$f(x)=2sin(ωx-\frac{π}{3})+1$,其中ω>0.
(I)若對任意x∈R都有$f(x)≤f(\frac{5π}{12})$,求ω的最小值;
(II)若函數y=lgf(x)在區(qū)間$[\frac{π}{4},\frac{π}{2}]$上單調遞增,求ω的取值范圍•

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列各對雙曲線中,既有相同的離心率又有相同的漸近線的是( 。
A.$\frac{x^2}{3}-{y^2}=1$和  $\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$和  ${y^2}-\frac{x^2}{3}=1$
C.${y^2}-\frac{x^2}{3}=1$和  ${x^2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-{y^2}=1$和$\frac{y^2}{3}-\frac{x^2}{9}=-1$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知圓C:x2+y2-2x-4y+m=0.
(I)求m的取值范圍;
(II)當m=-11時,若圓C與直線x+ay-4=0交于M,N兩點,且∠MCN=120°,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下列函數中,是奇函數,又在定義域內為減函數的是( 。
A.y=$\frac{2}{x}$B.y=3-sinxC.y=-tanxD.y=-2x3

查看答案和解析>>

同步練習冊答案