【題目】△ABC的頂點(diǎn)A的坐標(biāo)為(1,4),∠B,∠C的平分線所在直線方程分別為x-2y=0和x+y-1=0,求BC所在直線的方程.
【答案】4x+17y+12=0.
【解析】
分別求得A關(guān)于兩條角平分線的對稱點(diǎn),由軸對稱性質(zhì)可知兩個(gè)對稱點(diǎn)都在BC直線上,即過兩個(gè)對稱點(diǎn)的直線方程為直線BC的方程。
設(shè)A關(guān)于直線x-2y=0的對稱點(diǎn)為點(diǎn)A′(x1,y1),
則根據(jù)幾何性質(zhì),它們應(yīng)該滿足的關(guān)系有:兩點(diǎn)的中點(diǎn)在直線x-2y=0上.
兩條直線連線垂直于直線x-2y=0.
列出式子即為:=0和·=-1,
解這兩個(gè)式子,得x1=,y1=.
設(shè)A關(guān)于直線x+y-1=0的對稱點(diǎn)為點(diǎn)A″(x2,y2),
同理可求得x2=-3,y2=0.
由幾何性質(zhì),點(diǎn)A′和點(diǎn)A″應(yīng)該都在BC所在直線上.應(yīng)用直線方程的兩點(diǎn)式容易求得這條直線的方程為4x+17y+12=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , 為的中點(diǎn).
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線段上是否存在一點(diǎn) (與點(diǎn)不重合),使得四點(diǎn)共面? (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2-4x-14y+45=0及點(diǎn)Q(-2,3).
(1)若點(diǎn)P(m,m+1)在圓C上,求直線PQ的斜率.
(2)若M是圓C上任一點(diǎn),求|MQ|的取值范圍.
(3)若點(diǎn)N(a,b)在圓C上,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點(diǎn),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) ,點(diǎn)P是圓 上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
(1)求點(diǎn)E的軌跡方程;
(2)已知M,N兩點(diǎn)的坐標(biāo)分別為(﹣2,0),(2,0),點(diǎn)T是直線x=4上的一個(gè)動(dòng)點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an2﹣(2an﹣1﹣1)an﹣2an﹣1=0(n≥2,n∈N*),數(shù)列{bn}滿足b1=1,b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*)
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和為Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com