(1)設(shè)拋物線被直線截得的弦長(zhǎng)為,求值.(2)以(1)中的弦為底邊,以x軸上的點(diǎn)P為頂點(diǎn)作三角形,當(dāng)三角形的面積為9時(shí),求P點(diǎn)坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)由得:   

設(shè)直線與拋物線交于兩點(diǎn).則有:

    ,即

(2),底邊長(zhǎng)為,∴三角形高

∵點(diǎn)Px軸上,∴設(shè)P點(diǎn)坐標(biāo)是   

則點(diǎn)P到直線的距離就等于h,即

,即所求P點(diǎn)坐標(biāo)是(-1,0)或(5,0).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線過定點(diǎn)A(-1,0),且以直線x=1為準(zhǔn)線
(Ⅰ)求拋物線頂點(diǎn)的軌跡C的方程;
(Ⅱ)若直線l與軌跡C交于不同的兩點(diǎn)M,N,且線段MN恰被直線x=-
12
平分,設(shè)弦MN的垂直平分線的方程為y=kx+m,試求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)被直線y=2x-4截得的弦AB長(zhǎng)為3
5

(1)求此拋物線的方程;
(2)設(shè)直線AB上有一點(diǎn)Q,使得A,Q,B三點(diǎn)到拋物線準(zhǔn)線的距離成等差數(shù)列,求Q點(diǎn)坐標(biāo);
(3)在拋物線上求一點(diǎn)M,使M到Q點(diǎn)距離與M到焦點(diǎn)的距離之和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)拋物線C:x2=4y,有下列命題:
①設(shè)直線l:y=kx+l,則直線l被拋物線C所截得的最短弦長(zhǎng)為4;
②已知直線l:y=kx+l交拋物線C于A,B兩點(diǎn),則以AB為直徑的圓一定與拋物線的準(zhǔn)線相切;
③過點(diǎn)P(2,t)(t∈R)與拋物線有且只有一個(gè)交點(diǎn)的直線有1條或3條;
④若拋物線C的焦點(diǎn)為F,拋物線上一點(diǎn)Q(2,1)和拋物線內(nèi)一點(diǎn)R(2,m)(m>1),過點(diǎn)Q作拋物線的切線l1,直線l2過點(diǎn)Q且與l1垂直,則l2一定平分∠RQF.
其中你認(rèn)為是真命題的所有命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:云南省昆明三中、滇池中學(xué)09-10學(xué)年高二上學(xué)期期末考試(理) 題型:解答題

 (1)設(shè)拋物線被直線截得的弦長(zhǎng)為,求值.(2)以(1)中的弦為底邊,以x軸上的點(diǎn)P為頂點(diǎn)作三角形,當(dāng)三角形的面積為9時(shí),求P點(diǎn)坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案