12.某人隨機(jī)播放甲、乙、丙、丁4首歌曲中的2首,則甲、乙2首歌曲至少有1首被播放的概率是$\frac{5}{6}$.

分析 先求出基本事件總數(shù)n=${C}_{4}^{2}$=6,甲、乙2首歌曲至少有1首被播放的對(duì)立事件是甲、乙2首歌曲都沒(méi)有被播放,由此能求出甲、乙2首歌曲至少有1首被播放的概率.

解答 解:∵隨機(jī)播放甲、乙、丙、丁4首歌曲中的2首,
∴基本事件總數(shù)n=${C}_{4}^{2}$=6,
甲、乙2首歌曲至少有1首被播放的對(duì)立事件是甲、乙2首歌曲都沒(méi)有被播放,
∴甲、乙2首歌曲至少有1首被播放的概率:
p=1-$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知全集U={1,2,3,4},集合A={1,4},B={3,4},則∁U(A∪B)={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),直線(xiàn)l:y=2x-2,若直線(xiàn)l平行于雙曲線(xiàn)C的一條漸近線(xiàn)且經(jīng)過(guò)C的一個(gè)頂點(diǎn),則雙曲線(xiàn)C的焦點(diǎn)到漸近線(xiàn)的距離為( 。
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在我國(guó)古代著名的數(shù)學(xué)專(zhuān)著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增一十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問(wèn):幾日相逢?( 。
A.8日B.9日C.12日D.16日

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知實(shí)數(shù)a,b滿(mǎn)足2<a<b<3,下列不等關(guān)系中一定成立的是( 。
A.a3+15b>b3+15aB.a3+15b<b3+15aC.b•2a>a•2bD.b•2a<a•2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù)),其中0≤α<π.在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C1:ρ=4cosθ.直線(xiàn)l與曲線(xiàn)C1相切.
(1)將曲線(xiàn)C1的極坐標(biāo)方程化為直角坐標(biāo)方程,并求α的值.
(2)已知點(diǎn)Q(2,0),直線(xiàn)l與曲線(xiàn)C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B兩點(diǎn),求△ABQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)Sn,Tn分別是數(shù)列{an}和{bn}的前n項(xiàng)和,已知對(duì)于任意n∈N*,都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$,求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.由于空氣污染嚴(yán)重,某工廠(chǎng)生產(chǎn)了兩種供人們外出時(shí)便于攜帶的呼吸裝置,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種裝置各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo)[70,76][76,82][82,88][88,94][94,100]
裝置甲81240328
裝置乙71840296
(Ⅰ)試分別估計(jì)裝置甲、裝置乙為合格品的概率;
(Ⅱ)生產(chǎn)一件裝置甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件裝置乙,若是合格品可盈利50元,若是次品則虧損10元.在(Ⅰ)的條件下,
(1)記X為生產(chǎn)一件裝置甲和生產(chǎn)一件裝置乙所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)求生產(chǎn)5件裝置乙所獲得的利潤(rùn)不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖為一個(gè)多面體的三視圖,則該多面體的體積為( 。
A.$\frac{20}{3}$B.7C.$\frac{22}{3}$D.$\frac{23}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案