4.某幾何體的三視圖如圖所示,正視圖與側視圖完全相同,則該幾何體的體積為$\frac{64-8π}{3}$.

分析 由三視圖可知:該幾何體是一個四棱錐,挖去一個圓錐所得的組合體,分別計算四棱錐和圓錐的體積,相減可得答案

解答 解:由三視圖可知:該幾何體是一個正四棱錐,挖去一個圓錐所得的組合體,
四棱錐的體積為$\frac{1}{3}×4×4×4$=$\frac{64}{3}$,
圓錐的體積為:$\frac{1}{3}π×{2}^{2}×2=\frac{8}{3}π$,
故組合體的體積$\frac{64-8π}{3}$;
故答案為:$\frac{64-8π}{3}$.

點評 本題考查的知識點是由三視圖求幾何體的體積和表面積,解決本題的關鍵是得到該幾何體的形狀.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F(xiàn)分別為AB,CD上得點,以EF為軸將正方形ADFE向上翻折,使平面ADFE與平面BEFC垂直.如圖2.
(1)若點P在線段BD上,使得FP⊥平面BDC,求FP的長;
(2)求多面體AEBDFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,若sin(A+B)=$\frac{1}{3}$,a=3,c=4,則sinA=( 。
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.命題p:?x∈N,x3<x2;命題q:?a∈(0,1),函數(shù)f(x)=logax在其定義域內單調遞減,則真命題是( 。
A.¬qB.p∧qC.¬p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若拋物線y2=-2px(p>0)的焦點與雙曲線$\frac{{x}^{2}}{3}$-y2=1的左焦點重合,則拋物線的準線方程為x=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某部門就“按現(xiàn)有的物價水平,撫養(yǎng)一個孩子要花多少錢”對100人進行了問卷調查,將調查結果制作成頻率分布直方圖如圖,已知樣本中數(shù)據(jù)在區(qū)間[30,35)上的人數(shù)與數(shù)據(jù)在區(qū)間[45,50)的人數(shù)之比為3:4.
(Ⅰ)求a,b的值;
(Ⅱ)(。└鶕(jù)問卷調查結果估計:按現(xiàn)有的物價水平,撫養(yǎng)一個孩子平均要花多少錢;
(ⅱ)按分層抽樣的方法在數(shù)據(jù)在區(qū)間[30,35)和[40,45)上的接受調查的市民中選取6人參加電視臺舉辦的訪談,再從這6人中隨機選取2人,求數(shù)據(jù)在[30,35)的市民中至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx,則二項式(1-$\frac{a}{x}$)5的展開式中x-3的系數(shù)為(  )
A.160B.80C.-80D.-160

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,若依次輸入m=${0.6^{\frac{1}{2}}}$,n=0.6-2,p=${({\frac{1}{3}})^{\frac{1}{2}}}$,則輸出的結果為( 。
A.${({\frac{1}{3}})^{\frac{1}{2}}}$B.${0.6^{\frac{1}{2}}}$C.0.6-2D.${0.6^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\\{\;}\end{array}\right.$,若方程f(x)=kx恰有4個不同的根,則實數(shù)k的取值范圍是$\frac{3}{5}$<k≤$\frac{3}{4}$或-$\frac{3}{4}$≤k<-$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案