分析 拋物線y2=4$\sqrt{3}$x的焦點(diǎn)為F($\sqrt{3}$,0),其準(zhǔn)線方程為x=-$\sqrt{3}$,利用△FAB為正三角形,可得A的坐標(biāo),代入雙曲線的方程,可得a,b的方程,利用雙曲線的一條漸近線方程是y=$\sqrt{2}$x,可得a,b的方程,從而可得a,b的值,即可求出雙曲線的方程.
解答 解:拋物線y2=4$\sqrt{3}$x的焦點(diǎn)為F($\sqrt{3}$,0),其準(zhǔn)線方程為x=-$\sqrt{3}$,
∵△FAB為正三角形,
∴|AB|=4,
將(-$\sqrt{3}$,2)代入雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1可得$\frac{3}{{a}^{2}}-\frac{4}{^{2}}$=1,
∵雙曲線的一條漸近線方程是y=$\sqrt{2}$x,∴$\frac{a}$=$\sqrt{2}$,
∴a=1,b=$\sqrt{2}$,
∴雙曲線C2的方程為${x^2}-\frac{y^2}{2}=1$.
故答案為${x^2}-\frac{y^2}{2}=1$.
點(diǎn)評(píng) 本題考查拋物線、雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,正確運(yùn)用拋物線、雙曲線的性質(zhì)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 143 | B. | 144 | C. | 287 | D. | 288 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 20 | C. | 26 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+2y-3=0 | B. | 2x-y+4=0 | C. | x+2y+3=0 | D. | x+2y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | ||
C. | 鈍角三角形 | D. | 以上情況都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,3] | B. | [-1,2] | C. | [-3,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com