【題目】某投資公司擬投資開(kāi)發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得10~1 000萬(wàn)元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1萬(wàn)元,同時(shí)不超過(guò)投資收益的20%.
(1) 設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為f(x),試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求;
(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎(jiǎng)勵(lì)方案的模型函數(shù)?
【答案】(1)見(jiàn)解析(2)不符合
【解析】試題分析:(1)利用函數(shù)單調(diào)性、不等式恒成立刻畫(huà)方案中三個(gè)要求即可(2)逐一驗(yàn)證函數(shù)f(x)=+2是否滿(mǎn)足三個(gè)條件,顯然滿(mǎn)足① f(x)是增函數(shù);② f(x)≥1恒成立;根據(jù)函數(shù)最值得f(x)≤不 恒成立.
試題解析:解:(1) 由題意知,公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求是:
當(dāng)x∈[10,1 000]時(shí),① f(x)是增函數(shù);② f(x)≥1恒成立;③ f(x)≤恒成立.
(2) 對(duì)于函數(shù)模型f(x)=+2;當(dāng)x∈[10,1 000]時(shí),f(x)是增函數(shù),則f(x)≥1顯然恒成立;
而若使函數(shù)f(x)=+2≤在[10,1 000]上恒成立,整理即29x≥300恒成立,而(29x)min=290,∴ f(x)≤不恒成立.
故該函數(shù)模型不符合公司要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且.
(1)求角A的大;
(2)若是的角平分線(xiàn), ,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)記的極小值為,求的最大值;
(2)若對(duì)任意實(shí)數(shù)恒有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中不正確命題的個(gè)數(shù)是( )
①過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知平面垂直
②過(guò)空間任意一條直線(xiàn)有且僅有一個(gè)平面與已知平面垂直
③過(guò)空間任意一點(diǎn)有且僅有一個(gè)平面與已知的兩條異面直線(xiàn)平行
④過(guò)空間任意一點(diǎn)有且僅有一條直線(xiàn)與已知平面垂直
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3名志愿者在10月1號(hào)至10月5號(hào)期間參加社區(qū)服務(wù)工作.
(1)若每名志愿者在這5天中任選一天參加社區(qū)服務(wù)工作,且各志愿者的選擇互不影響,求3名志愿者恰好連續(xù)3天參加社區(qū)服務(wù)工作的概率;
(2)若每名志愿者在這5天中任選兩天參加社區(qū)服務(wù)工作,且各志愿者的選擇互不影響,記表示這3名志愿者在10月1號(hào)參加社區(qū)服務(wù)工作的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)證明: ;
(2)根據(jù)(1)證明: .
(B)已知函數(shù), .
(1)用分析法證明: ;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(1) 判別函數(shù)f(x)的奇偶性;
(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;
(3) 求關(guān)于x的不等式f(1-x2)+f(2x+2)<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為是上一點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn),平行于的直線(xiàn)交于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為.證明:直線(xiàn)與軸圍成的三角形是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com