【題目】已知函數(shù)a0.

1)求fx)的單調(diào)增區(qū)間;

2)當(dāng)x[0π]時,fx)值域為[34],求ab的值.

【答案】1[,]kZ;(2

【解析】

1)降次化簡,結(jié)合三角函數(shù)的圖象及性質(zhì)即可求出fx)的單調(diào)增區(qū)間;

2)當(dāng)x[0π]時,求出fx)值域,即可得ab的值.

1)函數(shù)a0

化簡可得:fx=asinx+acosx+b+a= a sinx++a+b.

,kZ.

可得:x.

fx)的單調(diào)增區(qū)間為[],kZ.

2)當(dāng)x[0π]時,

可得:[].

∴當(dāng)x+時,函數(shù)fx)取得最大值為.

∴當(dāng)x+時,函數(shù)fx)取得最小值為.

由題意,可得:,

解得:.

故得當(dāng)x[0π]時,fx)值域為[3,4],此時a的值為b的值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B為橢圓的左、右頂點,直線過橢圓C的右焦點F且交橢圓于PQ兩點.連結(jié)并延長交直線于點M.

1)若直線的斜率為,求直線的方程;

2)求證:AQ,M三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為兩個隨機事件,給出以下命題:(1)若為互斥事件,且,則;(2)若,,,則為相互獨立事件;(3)若,,則為相互獨立事件;(4)若,,則為相互獨立事件;(5)若,,,則為相互獨立事件;其中正確命題的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過焦點的直線與拋物線交于兩點,與橢圓交于兩點,滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B兩點的坐標(biāo)分別為(﹣10),(10.條件甲:A、BC三點構(gòu)成以∠C為鈍角的三角形;條件乙:點C的坐標(biāo)是方程x2+2y2=1y≠0)的解,則甲是乙的( 。

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,192,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結(jié)果分成,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點O,焦點在x軸上的橢圓C過點FC的右焦點,⊙F的方程為

1)求C的方程;

2)若直線與⊙O相切,與⊙F交于M、N兩點,與C交于PQ兩點,其中MP在第一象限,記⊙O的面積為,求取最大值時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓與直線相切于點,與正半軸交于點,與直線在第一象限的交點為.為圓上任一點,且滿足,以為坐標(biāo)的動點的軌跡記為曲線

1)求圓的方程及曲線的方程;

2)若兩條直線分別交曲線于點,求四邊形面積的最大值,并求此時的的值.

3)根據(jù)曲線的方程,研究曲線的對稱性,并證明曲線為橢圓.

查看答案和解析>>

同步練習(xí)冊答案