【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).

【答案】
(1)解:設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,

由條件a4+b4=27,s4﹣b4=10,

得方程組 ,解得

故an=3n﹣1,bn=2n,n∈N*


(2)證明:方法一,由(1)得,Tn=2an+22an1+23an2+…+2na1 ①;

2Tn=22an+23an1+…+2na2+2n+1a1; ②;

由②﹣①得,Tn=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2

= +2n+2﹣6n+2

=10×2n﹣6n﹣10;

而﹣2an+10bn﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;

故Tn+12=﹣2an+10bn(n∈N*).

方法二:數(shù)學(xué)歸納法,

③當(dāng)n=1時(shí),T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,

④假設(shè)當(dāng)n=k時(shí)等式成立,即Tk+12=﹣2ak+10bk,

則當(dāng)n=k+1時(shí)有,

Tk+1=ak+1b1+akb2+ak1b3+…+a1bk+1

=ak+1b1+q(akb1+ak1b2+…+a1bk

=ak+1b1+qTk

=ak+1b1+q(﹣2ak+10bk﹣12)

=2ak+1﹣4(ak+1﹣3)+10bk+1﹣24

=﹣2ak+1+10bk+1﹣12.

即Tk+1+12=﹣2ak+1+10bk+1,因此n=k+1時(shí)等式成立.

③④對(duì)任意的n∈N*,Tn+12=﹣2an+10bn成立.


【解析】(1)直接設(shè)出首項(xiàng)和公差,根據(jù)條件求出首項(xiàng)和公差,即可求出通項(xiàng).(2)先寫出Tn的表達(dá)式;方法一:借助于錯(cuò)位相減求和;
方法二:用數(shù)學(xué)歸納法證明其成立.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)等比數(shù)列的通項(xiàng)公式(及其變式)的理解,了解通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求曲線的普通方程,并說(shuō)明它表示什么曲線;

(Ⅱ)設(shè)曲線與直線分別交于,兩點(diǎn),若,,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)滿足對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:

分組

頻數(shù)

頻率

24

4

0.1

2

0.05

合計(jì)

1

(1)求出表中,及圖中的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)統(tǒng)計(jì)知識(shí)的四個(gè)命題正確的是( )

A. 衡量?jī)勺兞恐g線性相關(guān)關(guān)系的相關(guān)系數(shù)越接近,說(shuō)明兩變量間線性關(guān)系越密切

B. 在回歸分析中,可以用卡方來(lái)刻畫回歸的效果,越大,模型的擬合效果越差

C. 線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

D. 線性回歸方程中,變量每增加一個(gè)單位時(shí),變量平均增加個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再?gòu)闹谐槿?人作為隊(duì)長(zhǎng),求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某種書(shū)籍每?jī)?cè)的成本費(fèi)(元)與印刷冊(cè)數(shù)(千冊(cè))的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

為了預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi),建立了兩個(gè)回歸模型.

(1)根據(jù)散點(diǎn)圖,你認(rèn)為選擇哪個(gè)模型預(yù)測(cè)更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程并預(yù)測(cè)印刷千冊(cè)時(shí)每?jī)?cè)的成本費(fèi).

附:對(duì)于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案