【題目】某組織在某市征集志愿者參加志愿活動(dòng),現(xiàn)隨機(jī)抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意參加志愿活動(dòng)和不愿意參加志愿活動(dòng)的男女生比例情況,具體數(shù)據(jù)如圖所示.
(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,再從中抽取2人作為隊(duì)長,求抽取的2人至少有一名女生的概率.
參考數(shù)據(jù)及公式:
.
【答案】(1) 沒有99%的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān)(2)
【解析】試題分析:(1)完善列聯(lián)表,求出,然后判斷是否有的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān);
(2)分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,則女生4人,男生3人,分別編號(hào)為從中任取兩人的所有基本事件共有21種情況,其中滿足兩人中至少有一人是女生的基本事件數(shù)有18個(gè),從而求得抽取的2人至少有一名女生的概率.
試題解析:
(Ⅰ)
愿意 | 不愿意 | 總計(jì) | |
男生 | 15 | 45 | 60 |
女生 | 20 | 20 | 40 |
總計(jì) | 35 | 65 | 100 |
計(jì)算,
所以沒有99%的把握認(rèn)為愿意參與志愿活動(dòng)與性別有關(guān).
(Ⅱ)用分層抽樣的方法從愿意參加志愿活動(dòng)的市民中選取7名志愿者,則女生4人,男生3人,分別編號(hào)為從中任取兩人的所有基本事件如下:
,,
,共有21種情況,其中滿足兩人中至少有一人是女生的基本事件數(shù)有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有直線和平面,則下列四個(gè)命題中,正確的是( )
A. 若m∥α,n∥α,則m∥nB. 若mα,nα,m∥β,l∥β,則α∥β
C. 若α⊥β,mα,則m⊥βD. 若α⊥β,m⊥β,mα,則m∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l.過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有和、“諧”、“!薄皥@”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“和”、“諧”兩個(gè)字都摸到就停止摸球,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生到之間取整數(shù)值的隨機(jī)數(shù),分別用,,,代表“和”、“諧”、“!、“園”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):
由此可以估計(jì),恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在某學(xué)院大一年級(jí)名學(xué)生中進(jìn)行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占.這名學(xué)生中南方學(xué)生共人。南方學(xué)生中有人不喜歡甜品.
(1)完成下列列聯(lián)表:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | |||
北方學(xué)生 | |||
合計(jì) |
(2)根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(3)已知在被調(diào)查的南方學(xué)生中有名數(shù)學(xué)系的學(xué)生,其中名不喜歡甜品;有名物理系的學(xué)生,其中名不喜歡甜品.現(xiàn)從這兩個(gè)系的學(xué)生中,各隨機(jī)抽取人,記抽出的人中不喜歡甜品的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點(diǎn)處的切線過點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(II)若函數(shù)在區(qū)間內(nèi)無零點(diǎn),求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)10≤x1<x2<x3<x4≤104 , x5=105 , 隨機(jī)變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機(jī)變量ξ2取值 、 、 、 、 的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則( )
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關(guān)系與x1、x2、x3、x4的取值有關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com