【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點為F,準線為l.過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=

【答案】2
【解析】解:拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點為F,準線為l,消去參數(shù)可得x=2p ,
化簡可得y2=2px,表示頂點在原點、開口向右、對稱軸是x軸的拋物線,
故焦點F( ,0),準線l的方程為x=﹣
則由拋物線的定義可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF為等邊三角形.
設點M的坐標為(3,m ),則點E(﹣ ,m).
把點M的坐標代入拋物線的方程可得m2=2×p×3,即 p=
再由|EF|=|ME|,可得 p2+m2= ,即 p2+6p=9+ +3p,解得p=2,或p=﹣6 (舍去),
所以答案是 2.
【考點精析】本題主要考查了拋物線的參數(shù)方程的相關知識點,需要掌握拋物線的參數(shù)方程可表示為才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓E: 的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1 , F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個命題與正整數(shù)n有關,如果當 時命題成立,那么可推得當時命題也成立. 現(xiàn)已知當n=8時該命題不成立,那么可推得 ( )

A. 當n=7時該命題不成立 B. 當n=7時該命題成立

C. 當n=9時該命題不成立 D. 當n=9時該命題成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足對任意,都有成立,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設,農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設前后農(nóng)村的經(jīng)濟收入構成比例.得到如下餅圖:

則下面結論中不正確的是

A. 新農(nóng)村建設后,種植收入減少

B. 新農(nóng)村建設后,其他收入增加了一倍以上

C. 新農(nóng)村建設后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:

分組

頻數(shù)

頻率

24

4

0.1

2

0.05

合計

1

(1)求出表中,及圖中的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關統(tǒng)計知識的四個命題正確的是( )

A. 衡量兩變量之間線性相關關系的相關系數(shù)越接近,說明兩變量間線性關系越密切

B. 在回歸分析中,可以用卡方來刻畫回歸的效果,越大,模型的擬合效果越差

C. 線性回歸方程對應的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點

D. 線性回歸方程中,變量每增加一個單位時,變量平均增加個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動,現(xiàn)隨機抽出60名男生和40名女生共100人進行調(diào)查,統(tǒng)計出100名市民中愿意參加志愿活動和不愿意參加志愿活動的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認為愿意參與志愿活動與性別有關?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,再從中抽取2人作為隊長,求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高一年級學生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內(nèi),發(fā)布成績使用等級制.各等級劃分標準見下表.

規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質(zhì)情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.

I)求和頻率分布直方圖中的的值,并估計該校高一年級學生成績是合格等級的概率;

II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調(diào)研,求至少有一名學生是等級的概率.

查看答案和解析>>

同步練習冊答案