【題目】下列說(shuō)法中,正確的有__________.(寫(xiě)出所有正確說(shuō)法的序號(hào))

①已知關(guān)于的不等式的角集為,則實(shí)數(shù)的取值范圍是

②已知等比數(shù)列的前項(xiàng)和為,則、也構(gòu)成等比數(shù)列.

③已知函數(shù)(其中)在上單調(diào)遞減,且關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)解,則

④已知,且,則的最小值為

⑤在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn), 的取值范圍是

【答案】④⑤

【解析】對(duì)于①, 時(shí)關(guān)于的不等式的解集也為, 所以①錯(cuò);對(duì)于②當(dāng) , 為偶數(shù)時(shí),結(jié)論錯(cuò)誤,故②錯(cuò),對(duì)于③,

上的單調(diào)遞減函數(shù), 上單調(diào)遞減, 上單調(diào)遞減,且 上的最小值大于或等于 ,解得 ,作出 的函數(shù)如圖所示 恰有兩個(gè)不相等的實(shí)數(shù)解, ,即 ,綜上 .故③錯(cuò);對(duì)于④ ,故④正確;對(duì)于⑤,可得, 再由可得 的夾角為 ,同理的夾角、的夾角都是,設(shè) , , ,所以的取值范圍是,故⑤正確,故答案為.

【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)命題真假的判斷綜合考查不等式、數(shù)列函數(shù)、向量三角函數(shù)以及數(shù)學(xué)化歸思想,屬于難題.該題型往往出現(xiàn)在在填空題最后兩題,綜合性較強(qiáng),同學(xué)們往往因?yàn)槟骋稽c(diǎn)知識(shí)掌握不牢就導(dǎo)致本題“全盤(pán)皆輸”,解答這類(lèi)問(wèn)題首先不能慌亂更不能因貪快而審題不清,其次先從最有把握的命題入手,最后集中力量攻堅(jiān)最不好理解的命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示單位長(zhǎng)度為:cm

1求該幾何體的體積;

2求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為為橢圓上一點(diǎn)(在軸上方),連結(jié)并延長(zhǎng)交橢圓于另一點(diǎn),設(shè).

(1)若點(diǎn)的坐標(biāo)為,且的周長(zhǎng)為8,求橢圓的方程;

(2)若垂直于軸,且橢圓的離心率,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)輸隊(duì)接到給災(zāi)區(qū)運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為型卡車(chē),6輛載重為型卡車(chē),10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送救災(zāi)物資.已知每輛卡車(chē)每天往返的次數(shù)為型卡車(chē)16次, 型卡車(chē)12次.每輛卡車(chē)每天往返的成本為型卡車(chē)240元, 型卡車(chē)378元.問(wèn)每天派出型卡車(chē)與型卡車(chē)各多少輛,運(yùn)輸隊(duì)所花的成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)軸不垂直的直線交橢圓于兩點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)直線的斜率為1時(shí),求的面積;

(3)在線段上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對(duì)任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),F(xiàn)給出以下四個(gè)結(jié)論:

①數(shù)列0,1,3具有性質(zhì)P;

②數(shù)列0,2,4,6具有性質(zhì)P;

③若數(shù)列A具有性質(zhì)P,則a1=0;

④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2。

其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶(hù)居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為, 的四組用戶(hù)中,用分層抽樣的方法抽取戶(hù)居民,則月平均用電量在的用戶(hù)中應(yīng)抽取多少戶(hù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓,直線,過(guò)右焦點(diǎn)的直線與橢圓交于兩點(diǎn),線段的垂直平分線分別交直線于點(diǎn)

1求弦長(zhǎng)的最小值;

2在直線上任取一點(diǎn),當(dāng)的斜率時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項(xiàng)和,向量=(1,bn), =(an-1,Sn), //

(1)若bn=2,求數(shù)列{an}通項(xiàng)公式;

(2)若, =0.

①證明:數(shù)列{an}為等差數(shù)列;

②設(shè)數(shù)列{cn}滿(mǎn)足,問(wèn)是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得成等比數(shù)列,若存在,求出l、m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案