【題目】如圖所示,和所在平面互相垂直,且,,,分別為,的中點(diǎn).
(1)求證:;
(2)求二面角的正弦值.
【答案】(1)見(jiàn)解析(2)
【解析】
試題分析:(1)(方法一)過(guò)E作EO⊥BC,垂足為O,連OF,由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可證明EF⊥BC.(方法二)由題意,以B為坐標(biāo)原點(diǎn),在平面DBC內(nèi)過(guò)B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過(guò)B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標(biāo)系.
易得,所以,因此,從而得;(2) (方法一)在圖1中,過(guò)O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF,因此∠EGO為二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在圖2中,平面BFC的一個(gè)法向量為,設(shè)平面BEF的法向量,又,由得其中一個(gè),設(shè)二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)證明:
(方法一)過(guò)E作EO⊥BC,垂足為O,連OF,
由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由題意,以B為坐標(biāo)原點(diǎn),在平面DBC內(nèi)過(guò)B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內(nèi)過(guò)B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標(biāo)系.
易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,從而,所以.
(2)(方法一)在圖1中,過(guò)O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF.
因此∠EGO為二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即二面角E-BF-C的正弦值為.
(方法二)在圖2中,平面BFC的一個(gè)法向量為,設(shè)平面BEF的法向量,又,由得其中一個(gè),設(shè)二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即二面角E-BF-C的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人玩摸卡片游戲,現(xiàn)有標(biāo)號(hào)為1到12的卡片共12張,每人摸4張.
甲說(shuō):我摸到卡片的標(biāo)號(hào)是10和12;
乙說(shuō):我摸到卡片的標(biāo)號(hào)是6和11;
丙說(shuō):我們?nèi)烁髯悦娇ㄆ臉?biāo)號(hào)之和相等.
據(jù)此可判斷丙摸到的編號(hào)中必有的兩個(gè)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組共有10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)1次的有2人、2次的有4人、3次的有4人.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(I)設(shè)為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件發(fā)生的概率;
(II)設(shè)為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國(guó). 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動(dòng)物生長(zhǎng). 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來(lái)越快,經(jīng)過(guò)個(gè)月其覆蓋面積為,經(jīng)過(guò)個(gè)月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過(guò)時(shí)間個(gè)月的關(guān)系有兩個(gè)函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過(guò)幾個(gè)月該水域中水葫蘆面積是當(dāng)初投放的倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為,連結(jié).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)為該拋物線上的一動(dòng)點(diǎn)(與點(diǎn)、不重合),設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)點(diǎn)在直線的下方運(yùn)動(dòng)時(shí),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)名六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表(平均每天喝以上為常喝,體重超過(guò)為肥胖):
常喝 | 不常喝 | 合計(jì) | |
肥胖 | |||
不胖 | |||
合計(jì) |
(1)已知在全部人中隨機(jī)抽取人,求抽到肥胖的學(xué)生的概率?
(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說(shuō)明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(其中名女生),抽取人參加電視節(jié)目,則正好抽到一男一女的概率是多少?
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列五個(gè)結(jié)論,其中正確的結(jié)論是( )
A.函數(shù)的最大值為
B.已知函數(shù)(且)在上是減函數(shù)則a的取值范圍是
C.在同一直角坐標(biāo)系中,函數(shù)與的圖象關(guān)于y軸對(duì)稱
D.在同一直角坐標(biāo)系中,函數(shù)與的圖象關(guān)于直線對(duì)稱
E.已知定義在R上的奇函數(shù)在內(nèi)有1010個(gè)零點(diǎn),則函數(shù)的零點(diǎn)個(gè)數(shù)為2021
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工科院校對(duì)A、B兩個(gè)專業(yè)的男、女生人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),得到以下表格:
專業(yè)A | 專業(yè)B | 合計(jì) | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計(jì) | 50 | 100 |
如果認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān),那么犯錯(cuò)誤的概率不會(huì)超過(guò)( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線的左、右焦點(diǎn)分別為. 若點(diǎn)P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com