設(shè)計(jì)一幅宣傳畫(huà),要求畫(huà)面面積為4000cm2,畫(huà)面的上下各留8cm空白,左右各留5cm空白,怎樣設(shè)計(jì)畫(huà)面的高與寬,才能使宣傳畫(huà)所用紙張的面積最小,最小面積是多少?
設(shè)畫(huà)面的高為xcm時(shí),宣傳畫(huà)所用紙張面積為ycm2,
此時(shí),畫(huà)面的寬為
4000
x
cm,
y=(x+16)•(
4000
x
+10)
=4000+10x+
64000
x
+160

=10(x+
6400
x
)+4160≥10•2
x•
6400
x
+4160=5760
,
當(dāng)且僅當(dāng)x=
6400
x
即x=80時(shí)等號(hào)成立.
∴設(shè)計(jì)畫(huà)面的高為80cm,寬為50cm的宣傳畫(huà)所用紙張面積最小,最小面積是5760cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知a>b>0,則a+
1
b(a-b)
的最小值為( 。
A.2B.3C.4D.2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)求函數(shù)y=
x2-2x+1
x-2
(x<2)的最大值
(2)函數(shù)y=loga(x+3)(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l1a2x+y+2=0與直線l2:bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為( 。
A.5B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

要設(shè)計(jì)一張矩形廣告牌,該廣告牌含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為24500cm2四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告牌的高與寬的尺寸(單位:cm),能使矩形廣告牌面積最小?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)=2x+
1
x
-1(x<0),則f(x)( 。
A.有最大值B.有最小值C.是增函數(shù)D.是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的函數(shù)y=
x2+1+c
x2+c

(1)若c=-1,求該函數(shù)的值域.
(2)當(dāng)c滿(mǎn)足什么條件時(shí),該函數(shù)的值域?yàn)閇2,+∞)?說(shuō)明你的理由.
(3)求證:若c>1,則y
1+c
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

x+
m
x
≥4
在x∈[3,4]內(nèi)恒成立,則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)x,y滿(mǎn)足約束條件,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則的最小值為_(kāi)____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案