A. | 向右平移$\frac{π}{4}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{2}$個(gè)單位 | D. | 向右平移$\frac{π}{2}$個(gè)單位 |
分析 由題意可得可得函數(shù)的周期為π,即$\frac{2π}{ω}$=π,求得ω=2,可得f(x)=sin(2x+$\frac{π}{6}$).再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得出結(jié)論.
解答 解:根據(jù)函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,可得函數(shù)的周期為π,
即:$\frac{2π}{ω}$=π,可得:ω=2,
可得:f(x)=sin(2x+$\frac{π}{6}$).
再由函數(shù)g(x)=cos(2x+$\frac{π}{6}$)=sin[$\frac{π}{2}$-(2x+$\frac{π}{6}$)]=sin[2(x+$\frac{π}{4}$)+$\frac{π}{6}$],
故把f(x)=sin(2x+$\frac{π}{6}$) 的圖象向左平移$\frac{π}{4}$個(gè)單位,可得函數(shù)g(x)=cos(2x+$\frac{π}{6}$)的圖象,
故選:B.
點(diǎn)評(píng) 本題主要考查等差數(shù)列的定義和性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{{e}^{2}}{4}$,+∞) | B. | [$\frac{{e}^{2}}{8}$,+∞) | C. | (0,$\frac{{e}^{2}}{4}$] | D. | (0,$\frac{{e}^{2}}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com