【題目】已知橢圓的離心率為, 為焦點(diǎn)是的拋物線上一點(diǎn), 為直線上任一點(diǎn), 分別為橢圓的上,下頂點(diǎn),且三點(diǎn)的連線可以構(gòu)成三角形.

(1)求橢圓的方程;

(2)直線與橢圓的另一交點(diǎn)分別交于點(diǎn),求證:直線過定點(diǎn).

【答案】(1) ;(2)見解析.

【解析】試題分析: (1)由已知列出方程組,解出a,b,c的值,求出橢圓的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線HA與橢圓方程,得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系得出D點(diǎn)坐標(biāo),同理求出E點(diǎn)坐標(biāo),代入直線方程并化簡(jiǎn),即可求出定點(diǎn).

試題解析:

(1)由題意知, ,解得

∴橢圓的方程為.

(2)設(shè)點(diǎn),易知,

∴直線的方程為,直線的方程為.

聯(lián)立,得,

冋理可得,

∴直線的斜率為

∴直線的方程為,即,

∴直線過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,,底面是菱形,且,,過點(diǎn)作直線為直線上一動(dòng)點(diǎn).

(1)求證:;

(2)當(dāng)面時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點(diǎn),且傾斜角為,在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為

1)求直線的參數(shù)方程與曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月1日,我國(guó)實(shí)行全面二孩政策,同時(shí)也對(duì)婦幼保健工作提出了更高的要求.某城市實(shí)行網(wǎng)格化管理,該市婦聯(lián)在網(wǎng)格1與網(wǎng)格2兩個(gè)區(qū)域內(nèi)隨機(jī)抽取12個(gè)剛滿8個(gè)月的嬰兒的體重信息,體重分布數(shù)據(jù)的莖葉圖如圖所示(單位:斤,2斤1千克),體重不超過千克的為合格.

(1)從網(wǎng)格1與網(wǎng)格2分別隨機(jī)抽取2個(gè)嬰兒,求網(wǎng)格1至少有一個(gè)嬰兒體重合格且網(wǎng)格2至少有一個(gè)嬰兒體重合格的概率;

(2)婦聯(lián)從網(wǎng)格1內(nèi)8個(gè)嬰兒中隨機(jī)抽取4個(gè)進(jìn)行抽檢,若至少2個(gè)嬰兒合格,則抽檢通過,若至少3個(gè)合格,則抽檢為良好,求網(wǎng)格1在抽檢通過的條件下,獲得抽檢為良好的概率;

(3)若從網(wǎng)格1與網(wǎng)格2內(nèi)12個(gè)嬰兒中隨機(jī)抽取2個(gè),用表示網(wǎng)格2內(nèi)嬰兒的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司生產(chǎn)得到襯衫,每件定價(jià)80元,在某城市年銷售8萬件,現(xiàn)在該公司在該市設(shè)立代理商來銷售襯衫代理商要收取代銷費(fèi),代銷費(fèi)為銷售金額的%(即每銷售100元收取元),為此,該襯衫每件價(jià)格要提高到元才能保證公司利潤(rùn).由于提價(jià)每年將少銷售萬件,如果代理商每年收取的代銷費(fèi)不小于16萬元,則的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+2a,且不等式fx)≤4的解集為{x|1x3}

1)求實(shí)數(shù)a的值.

2)若存在實(shí)數(shù)x0,使fx0)≤5m2+mf(﹣x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在直線x﹣2y﹣3=0上,并且經(jīng)過A(2,﹣3)和B(﹣2,﹣5),求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究經(jīng)常使用手機(jī)是否對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響,某校高二數(shù)學(xué)研究性學(xué)習(xí)小組進(jìn)行了調(diào)查,隨機(jī)抽取高二年級(jí)50名學(xué)生的一次數(shù)學(xué)單元測(cè)試成績(jī),并制成下面的2×2列聯(lián)表:

及格

不及格

合計(jì)

很少使用手機(jī)

20

5

25

經(jīng)常使用手機(jī)

10

15

25

合計(jì)

30

20

50

則有( 。┑陌盐照J(rèn)為經(jīng)常使用手機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響.

參考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.97.5%B.99%C.99.5%D.99.9%

查看答案和解析>>

同步練習(xí)冊(cè)答案