【題目】已知,且,求
(1)的值;
(2)的值.
【答案】(1);(2).
【解析】試題分析:(1)將條件平方得,結(jié)合,得sin θ>0,cos θ<0,進(jìn)而sin θ-cos θ>0,求出(sinθ-cosθ)2開方即可;
(2)由①②得sin θ+cos θ和sin θ-cos θ,求解sin θ和cos θ,即可得.
試題解析:
(1)∵sin θ+cos θ=,①∴(sin θ+cos θ)2=,解得sin θcos θ=-.
∵0<θ<π,且sin θcos θ<0,∴sin θ>0,cos θ<0,∴sin θ-cos θ>0.
又∵(sinθ-cosθ)2=1-2sin θcos θ=
∴sinθ-cosθ= ②.
(2)由①②得
sin θ+cos θ=
sin θ-cos θ=.
解得sin θ=,cos θ=-
∴tan θ==-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過點(0,1),且與x軸有唯一交點。
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)在[1,2]上的最小值h(a)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法: ①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=
④對分類變量X與Y,若它們的隨機變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ln(1+x)﹣x﹣ax2 .
(1)當(dāng)x=1時,f(x)取到極值,求a的值;
(2)當(dāng)a滿足什么條件時,f(x)在區(qū)間 上有單調(diào)遞增的區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(1)若曲線y=f(x)在點(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對數(shù)的底數(shù));
(2)若對任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠2萬元設(shè)計了某款式的服裝,根據(jù)經(jīng)驗,每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)(百套)的銷售額(單位:萬元).
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤;
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設(shè)計費+生產(chǎn)成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了普及環(huán)保知識,增強學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊3人)進(jìn)入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com