17.有一個奇數(shù)列1,3,5,7,9,…,現(xiàn)進行如下分組:第1組含有一個數(shù){1},第2組含兩個數(shù){3,5};第3組含三個數(shù){7,9,11};…試觀察每組內(nèi)各數(shù)之和與其組的編號數(shù)n的關(guān)系為等于n3

分析 由題意先計算第1、2、3組內(nèi)各數(shù)之和與其組的編號數(shù)的關(guān)系,再猜想.

解答 解:第1組各數(shù)之和為1=13,第2組各數(shù)之和為8=23,第3組各數(shù)之和為 27=33,
觀察規(guī)律,歸納可得,第n組各數(shù)之和為 n3,
答案為:等于n3

點評 本題主要考查歸納推理,關(guān)鍵找到規(guī)律,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.中國古代算書《孫子算經(jīng)》中有一著名的問題:今有物,不知其數(shù).三三數(shù)之剩二;五五數(shù)之剩三;七七數(shù)之剩二.問物幾何?后來,南宋數(shù)學家秦九昭在其《數(shù)書九章》中對此問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”.如圖程序框圖的算法思路源于“大衍求一術(shù)”,執(zhí)行該程序框圖,若輸入的a,b的值分別為40,34,則輸出的c的值為(  )
A.7B.9C.20D.22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知α,β,γ是某三角形的三個內(nèi)角,給出下列四組數(shù)據(jù):
①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③${cos^2}\frac{α}{2},{cos^2}\frac{β}{2},{cos^2}\frac{γ}{2}$;④$tan\frac{α}{2},tan\frac{β}{2},tan\frac{γ}{2}$
分別以每組數(shù)據(jù)作為三條線段的長,其中一定能構(gòu)成三角形的有(  )
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設D是函數(shù)y=f(x)定義域的一個子集,若存在x0∈D,使得f(x0)=-x0成立,則稱x0是f(x)的一個“準不動點”,也稱f(x)在區(qū)間D上存在準不動點.已知$f(x)={log_{\frac{1}{2}}}({{4^x}+a•{2^x}-1}),x∈[{0,1}]$.
(1)若a=1,求函數(shù)f(x)的準不動點;
(2)若函數(shù)f(x)在區(qū)間[0,1]上存在準不動點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow$,則m=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設函數(shù)f(x)在x0處可導,則$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$等于-f′(x0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.將命題“菱形的對角線互相垂直”改為“若p,則q”的形式,再寫出它的逆命題、否命題、逆否命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.數(shù)列{an}滿足a1=0,且an,n+1,an+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知{an}是等差數(shù)列,滿足a2=6,a5=15,數(shù)列{bn}滿足b2=8,b5=31,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案