【題目】下列命題正確的是( )
A.復(fù)數(shù)z1,z2的模相等,則z1,z2是共軛復(fù)數(shù)
B.z1,z2都是復(fù)數(shù),若z1+z2是虛數(shù),則z1不是z2的共軛復(fù)數(shù)
C.復(fù)數(shù)z是實數(shù)的充要條件是z=(是z的共軛復(fù)數(shù))
D.已知復(fù)數(shù)z1=-1+2i,z2=1-i,z3=3-2i(i是虛數(shù)單位),它們對應(yīng)的點分別為A,B,C,O為坐標原點,若(x,y∈R),則x+y=1
【答案】BC
【解析】
A.根據(jù)共軛復(fù)數(shù)的定義,舉例判斷;B.根據(jù)是虛數(shù),判斷兩個復(fù)數(shù)的虛部的關(guān)系,判斷選項;C.分別判斷充分和必要條件;D.利用向量,復(fù)數(shù),坐標的關(guān)系,利用向量相等求得的值.
A.模相等的復(fù)數(shù)不一定是共軛復(fù)數(shù),比如:,,這兩個復(fù)數(shù)的模相等,但不是共軛復(fù)數(shù),故A不正確;
B.設(shè), ,若是虛數(shù),,兩個復(fù)數(shù)的虛部不互為相反數(shù),所以不是的共軛復(fù)數(shù),故B正確;
C.設(shè),,若,則,所以復(fù)數(shù)是實數(shù),若是實數(shù),則 則,所以C正確;
D.由條件可知,,,若(x,y∈R),
則,
所以 ,解得:,
所以,故D不正確.
故選:BC
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,某地區(qū)植被覆蓋面積公頃與當?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如下:
公頃 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
請用最小二乘法求出y關(guān)于x的線性回歸方程;
根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少?
參考公式:線性回歸方程;其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在15~65歲的人群中隨機抽取n人進行問卷調(diào)查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:
調(diào)查問題是“雙峰山國家森林公園是幾A級旅游景點?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計結(jié)果如下表.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | y | 0.9 |
第4組 | [45,55) | 9 | a |
第5組 | [55,65] | 7 | b |
(1)分別求出n,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
①的單調(diào)遞減區(qū)間;
②當時,直線y=k與y=f (x)的圖象有兩個不同交點;
③函數(shù)y=f(x)的圖象與的圖象沒有公共點;
④當時,函數(shù)的最小值為2.
其中正確結(jié)論的序號是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若曲線與曲線在它們的某個交點處具有公共切線,求的值;
(Ⅱ)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍
(Ⅲ)若方程有三個不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實數(shù)的值(只需寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P-A BC的四個頂點都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA =3,AB=BC=2,則球O的表面積為( )
A.13π B.17π C.52π D.68π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對角線交于原點,且,求四邊形ABCD周長的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com