9.復數(shù)$\frac{1}{1+2i}$的虛部與實部的和是$-\frac{1}{5}$.

分析 利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)$\frac{1}{1+2i}$,則答案可求.

解答 解:$\frac{1}{1+2i}$=$\frac{1-2i}{(1+2i)(1-2i)}=\frac{1-2i}{5}=\frac{1}{5}-\frac{2}{5}i$,
則復數(shù)$\frac{1}{1+2i}$的虛部與實部的和是:$\frac{1}{5}-\frac{2}{5}=-\frac{1}{5}$.
故答案為:$-\frac{1}{5}$.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.(x+1)(2x2-$\frac{1}{x}}$)6的展開式的常數(shù)項為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ln(ax+1)+$\frac{{x}^{3}}{3}$-x2-ax(a∈R)
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a≥$\frac{3\sqrt{2}}{2}$時,設(shè)g(x)=ln[x2(ax+1)]+$\frac{{x}^{3}}{3}$-3ax-f(x)(x>0)的兩個極值點x1,x2(x1<x2)恰為φ(x)=lnx-cx2-bx的零點,求y=(x1-x2)φ′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{x}{a}$-sin2x的零點個數(shù)為11,則實數(shù)a的取值范圍是( 。
A.($\frac{9π}{4}$,$\frac{13π}{4}$)B.(-$\frac{7π}{2}$,-$\frac{5π}{2}$)∪($\frac{5π}{2}$,$\frac{7π}{2}$)
C.(-$\frac{13π}{4}$,-$\frac{9π}{4}$)∪($\frac{9π}{4}$,$\frac{13π}{4}$)D.(-$\frac{13π}{4}$,-$\frac{9π}{4}$]∪[$\frac{9π}{4}$,$\frac{13π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.點P為△ABC平面上一點,有如下三個結(jié)論:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,則點P為△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,則點P為△ABC的內(nèi)心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,則點P為△ABC的外心.
回答以下兩個小問:
(1)請你從以下四個選項中分別選出一項,填在相應的橫線上.
A.重心  B.外心  C.內(nèi)心  D.重心
(2)請你證明結(jié)論②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知數(shù)列{lnan}是等差數(shù)列,數(shù)列{an}的前n項和為Sn,已知S3=a2+5a1,a7=2,則a5=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知2是函數(shù)f(x)=$\left\{\begin{array}{l}{{log}_{2}(x+m),x≥2}\\{{2}^{x},x<2}\end{array}\right.$ 的一個零點,則f[f(4)]的值是( 。
A.3B.2C.1D.log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸相切,求該圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求下列函數(shù)的導數(shù).
(1)y=$\frac{{x}^{2}}{(2x+1)^{3}}$
(2)y=e-xsin2x.

查看答案和解析>>

同步練習冊答案