16.已知函數(shù)f(x)=ax2+bx-1(a,b∈R且a>0 )有兩個(gè)零點(diǎn),其中一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則$\frac{a+1}$的取值范圍是(0,2).

分析 由題意知,一個(gè)根在區(qū)間(1,2)內(nèi),得關(guān)于a,b的等式,再利用線性規(guī)劃的方法求出$\frac{a+1}$的取值范圍即可.

解答 解:設(shè)f(x)=ax2+bx-1=0,由題意得,f(1)•f(2)<0,
∴(a+b-1)(4a+2b-1)<0.且a>0.
即$\left\{\begin{array}{l}{a+b-1<0}\\{4a+2b-1>0}\\{a>0}\end{array}\right.$或$\left\{\begin{array}{l}{a+b-1>0}\\{4a+2b-1<0}\\{a>0}\end{array}\right.$,(不合題意舍去)
視a,b為變量,作出可行域如圖.

則$\frac{a+1}$的幾何意義表示平面區(qū)域內(nèi)的點(diǎn)與(-1,0)的所在直線的斜率,
結(jié)合圖象直線過(-1,0),(0,2)時(shí)斜率最大,最大值是2,
最小值是0,
故答案為:(0,2).

點(diǎn)評(píng) 本題考查了線性規(guī)劃的運(yùn)用,線性規(guī)劃為研究函數(shù)的最值或最優(yōu)解提供了新的方法,借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知p:關(guān)于x的不等式x2+2ax-a≠0的解集是R,q:-1<a<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖正方體ABCD-A1B1C1D1,棱長(zhǎng)為1,P為BC中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過A、P、Q的平面截該正方體所得的截面記為S,則下列命題正確的是(  )
①當(dāng)0<CQ<$\frac{1}{2}$時(shí),S為四邊形;
②當(dāng)CQ=$\frac{1}{2}$時(shí),S為等腰梯形;
③當(dāng)CQ=$\frac{3}{4}$時(shí),S與C1D1交點(diǎn)R滿足C1R1=$\frac{1}{3}$;
④當(dāng)$\frac{3}{4}$<CQ<1時(shí),S為六邊形;
⑤當(dāng)CQ=1時(shí),S的面積為$\frac{\sqrt{6}}{2}$.
A.①③④B.②④⑤C.①②④D.①②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-1|+|x+2|
(Ⅰ) 解關(guān)于x的不等式f(x)≥4;
(Ⅱ) 若關(guān)于x的不等式f(x)≥c恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)ξ表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生個(gè)數(shù),求事件“ξ=2”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)+2m-2≥0,則實(shí)數(shù)m的取值范圍為( 。
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|1<x<3},B={x|0<x<2},則A∩B=(  )
A.{x|0<x<3}B.{x|1<x<3}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用輾轉(zhuǎn)相除法求204,168,186三個(gè)數(shù)的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=x+\frac{a}{x}+2$的值域?yàn)椋?∞,0]∪[4,+∞),則a的值是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案