【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.
【答案】(1);(2)點(diǎn)在定直線上.
【解析】
(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;
(2)設(shè)出,運(yùn)用導(dǎo)數(shù)求得切線的斜率,求得為切點(diǎn)的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;
解:(1)依題意設(shè)直線的方程為,
由已知得:圓的圓心,半徑,
因?yàn)橹本與圓相切,
所以圓心到直線的距離,
即,解得或(舍去).
所以;
(2)依題意設(shè),由(1)知拋物線方程為,
所以,所以,設(shè),則以為切點(diǎn)的切線的斜率為,
所以切線的方程為.
令,,即交軸于點(diǎn)坐標(biāo)為,
所以, ,
,
.
設(shè)點(diǎn)坐標(biāo)為,則,
所以點(diǎn)在定直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,其焦距為,點(diǎn)E為橢圓的上頂點(diǎn),且.
(1)求橢圓C的方程;
(2)設(shè)圓的切線l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求證;
(3)在(2)的條件下,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大;
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是和;
③在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④若變量和滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān).
正確的個(gè)數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;
(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.
附:①;
②若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線外的一點(diǎn)(其中,為銳角)作平行于的直線與曲線分別交于.
(Ⅰ) 寫出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間爆發(fā)的新型冠狀病毒(COVID-19)是新中國(guó)成立以來感染人數(shù)最多的一次疫情.一個(gè)不知道自己已感染但處于潛伏期的甲從疫區(qū)回到某市過春節(jié),回到家鄉(xiāng)后與朋友乙、丙、丁相聚過,最終乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假設(shè)他受甲和受乙感染的概率分別是和.丁是受甲、乙或丙感染的,假設(shè)他受甲、乙和丙感染的概率分別是、和.在這種假設(shè)之下,乙、丙、丁中直接受甲感染的人數(shù)為.
(1)求的分布列和數(shù)學(xué)期望;
(2)該市在發(fā)現(xiàn)在本地出現(xiàn)新冠病毒感染者后,迅速采取應(yīng)急措施,其中一項(xiàng)措施是各區(qū)必須每天及時(shí),上報(bào)新增疑似病例人數(shù).區(qū)上報(bào)的連續(xù)天新增疑似病例數(shù)據(jù)是“總體均值為,中位數(shù)”,區(qū)上報(bào)的連續(xù)天新增疑似病例數(shù)據(jù)是“總體均值為,總體方差為”.設(shè)區(qū)和區(qū)連續(xù)天上報(bào)新增疑似病例人數(shù)分別為和,和分別表示區(qū)和區(qū)第天上報(bào)新增疑似病例人數(shù)(和均為非負(fù)).記,.
①試比較和的大;
②求和中較小的那個(gè)字母所對(duì)應(yīng)的個(gè)數(shù)有多少組?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)求的單調(diào)區(qū)間;
(Ⅱ)若R上有兩個(gè)不同的零點(diǎn),且,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com