17.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥平面ABC,AC⊥BC,AC=1,BC=2,S,點D是AB的中點.
(I)證明:AC1∥平面CDB1;
(Ⅱ)在線段AB上找一點P,使得直線AC1與CP所成角的為60°,求$\frac{{|{\overrightarrow{AP}}|}}{{|{\overrightarrow{AB}}|}}$的值.

分析 (Ⅰ)設(shè)CB1與C1B相交于E,連結(jié)DE,證明DE∥AC1,然后證明AC1∥平面CDB1
(Ⅱ)建立空間直角坐標(biāo)系,CC1為z軸,CA為x軸,CB為y軸,設(shè)$\overrightarrow{AP}=λ\overrightarrow{AB}(0<λ<1)$,利用向量的數(shù)量積轉(zhuǎn)化求解即可.

解答 (Ⅰ)證明:設(shè)CB1與C1B相交于E,連結(jié)DE,….(2分)
∵D是AB的中點,E是BC1的中點,∴DE∥AC1,….(6分)
∵DE?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1.….(7分)
(Ⅱ)建立空間直角坐標(biāo)系,CC1為z軸,CA為x軸,CB為y軸,….(9分)
設(shè)$\overrightarrow{AP}=λ\overrightarrow{AB}(0<λ<1)$,
$\overrightarrow{CP}=\overrightarrow{CA}+λ\overrightarrow{AB}=({1-λ,2λ,0})$,
$\overrightarrow{A{C_1}}=({-1,0,1})$
所以$|{cos\left?{\overrightarrow{A{C_1}},\overrightarrow{CP}}\right>}|=\frac{1}{2}$$⇒λ=\frac{1}{3}$
即求$\frac{{|{\overrightarrow{AP}}|}}{{|{\overrightarrow{AB}}|}}$=$\frac{1}{3}$…15分.
(向量寫出,夾角公式寫出,計算答案錯誤至少給2分)
非向量做法:指出角給(2分),其他視情況相應(yīng)給分

點評 本題考查直線與平面平行,點線面距離的求法,異面直線所成角的求法,考查會計信息能力,以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x1,x2,…,xn的平均數(shù)為10,標(biāo)準(zhǔn)差為2,則2x1-1,2x2-1,…,2xn-1的平均數(shù)和標(biāo)準(zhǔn)差分別為( 。
A.19和2B.19和3C.19和4D.19和8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2x3-ax2+8.
(1)若f(x)<0對?x∈[1,2]恒成立,求實數(shù)a的取值范圍;
(2)是否存在整數(shù)a,使得函數(shù)g(x)=f(x)+4ax2-12a2x+3a3-8在區(qū)間(0,1)上存在極小值,若存在,求出所有整數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.炮兵習(xí)慣于把周角的$\frac{1}{6000}$作為度量角的單位,稱為“密位“,1°及1弧度分別等于多少密位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義點P(x0,y0)到直線l:ax+by+c=0(a2+b2≠0)的有向距離為:$d=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知點P1、P2到直線l的有向距離分別是d1、d2.以下命題正確的是(  )
A.若d1=d2=1,則直線P1P2與直線l平行
B.若d1=1,d2=-1,則直線P1P2與直線l垂直
C.若d1+d2=0,則直線P1P2與直線l垂直
D.若d1•d2≤0,則直線P1P2與直線l相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a∈R,函數(shù)$f(x)=\frac{2}{x}+alnx$.
(Ⅰ)若函數(shù)f(x)在(0,2)上遞減,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a>0時,求f(x)的最小值g(a)的最大值;
(Ⅲ)設(shè)h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求證:h(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}的前n項和為Sn,a1=1,且S1,2S2,3S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)(α、β∈R且α、β、α+β均不等于$\frac{π}{2}+kπ,k∈Z$).
(Ⅰ)求|$\overrightarrow$+$\overrightarrow{c}$|的最大值;
(Ⅱ)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$ 且 $\overrightarrow{a}$⊥($\overrightarrow$-2$\overrightarrow{c}$)時,求tanα+tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$,數(shù)列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)設(shè)Sn是數(shù)列{$\frac{1}{3}$bn}的前n項和,求$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

同步練習(xí)冊答案