已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2015(x)=( 。
A、sinx+cosx
B、-sinx-cosx
C、sinx-cosx
D、-sinx+cosx
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),確定函數(shù)fn′(x)的周期性即可.
解答: 解:∵f1(x)=sinx+cosx,
∴f2(x)=f1′(x)=cosx-sinx,
f3(x)=f2′(x)=-sinx-cosx,
f4(x)=f3′(x)=-cosx+sinx,
f5(x)=f4′(x)=sinx+cosx,
…,
fn+4′(x)=fn′(x),
即fn′(x)是周期為4的周期函數(shù),
f2015(x)=f2014′(x)=f2′(x)=-sinx-cosx,
故選:B
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)公式求出函數(shù)的周期性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一枚骰子先后拋擲兩次,記第一次的點(diǎn)數(shù)為x,第二次的點(diǎn)數(shù)為y.
(Ⅰ)求點(diǎn)P(x,y)在直線(xiàn)y=x+1上的概率;
(Ⅱ)求y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x
|x+1|
<1的解集是( 。
A、{x|-1<x<0}
B、{x|x∈R,且x≠-1}
C、R
D、{x|0<x,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前Sn項(xiàng)和為Sn,a1=3,{bn}為等比數(shù)列,且b1=1,bn>0,b2+S2=10,S5=5b3+3a2,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足的不等式組
x≥0
y≥2x
kx-y+1≥0
表示的是一個(gè)直角三角形圍成的平面區(qū)域,則實(shí)數(shù)k=( 。
A、-
1
2
B、
1
2
C、0
D、0或-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2|x|.
(1)求函數(shù)f(x)的定義域及f(-
2
)的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)內(nèi)角為A,B,C,且sin2C+sinAsinB=sin2A+sin2B,則角C等于( 。
A、30°B、120°
C、60°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alog2x+blog3x+2且f(
1
2015
)=4,則f(2015)的值為( 。
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2-x
的定義域?yàn)?div id="reog09g" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案