若不等式ax2+bx+c>0的解集為(-2,1),求不等式ax2+(a+b)x+c-a<0的解集.
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:不等式ax2+bx+c>0的解集為(-2,1),可知:-2,1是一元二次方程ax2+bx+c=0的實數(shù)根,且a<0.利用根與系數(shù)的關系可得:
b
a
,
c
a
.代入不等式ax2+(a+b)x+c-a<0即可得出.
解答: 解:∵不等式ax2+bx+c>0的解集為(-2,1),
∴-2,1是一元二次方程ax2+bx+c=0的實數(shù)根,且a<0.
-2+1=-
b
a
,-2×1=
c
a

化為
b
a
=1,
c
a
=-2.
∴不等式ax2+(a+b)x+c-a<0化為 x2+(1+
b
a
)x+
c
a
-1>0,
代入可得x2+(1+1)x-2-1>0,即x2+2x-3>0,
解得1<x,或x<-3.
∴不等式ax2+(a+b)x+c-a<0的解集為{x|1<x,或x<-3}.
點評:本題考查了一元二次不等式的解集與相應的一元二次方程的根與系數(shù)的關系,考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對給出的下列命題:
①?x∈R,-x2<0;
②?x∈Q,x2=5;
③?x∈R,x2-x-1=0;
④若p:?x∈N,x2≥1,則¬p:?x∈N,x2<1.
其中是真命題的是(  )
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖如圖1.求側(cè)視圖的面積.
(2)已知某幾何體的三視圖如圖2,當a+b取最大值時,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx-lnx(a>0,b∈R).
(Ⅰ)設a=1,b=-1,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x>0,f(x)≥f(1).試比較lna與-2b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
1+x2

(I)判斷f(x)的奇偶性;
(Ⅱ)確定函數(shù)f(x)在(-∞,0)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.
(Ⅲ)若對任意x∈[1,2]都有f(x)≤
a
2
-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三個內(nèi)角A、B、C所對的邊分別為a、b、c,且2bcosC=2a-c.
(1)求角B;
(2)若△ABC的面積S=
3
,a+c=4,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)同時滿足①f(0)=f(2),②f(x)max=15,③方程f(x)=0的兩根的立方和等于17.(立方和公式:a3+b3=(a+b)(a2-ab+b2))
(1)求f(x)的解析式.
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(
4
9
)
1
2
-9.80-(
8
27
)
2
3
+(
2
3
2
(2)
lg5•lg4+(
2
lg2 )
2
lg14-
1
2
lg49

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)判斷f(x)的單調(diào)性;
(3)解關于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

同步練習冊答案