【題目】如圖,矩形中, , 分別為邊上的點(diǎn),且,將沿折起至位置(如圖所示),連結(jié),其中.
(Ⅰ) 求證: ;
(Ⅱ) 在線段上是否存在點(diǎn)使得?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
(Ⅲ) 求點(diǎn)到的距離.
【答案】(1)見解析;(2)
【解析】試題分析:(Ⅰ)連結(jié)EF,由翻折不變性可知,PB=BC=6,PE=CE=9,由已知條件,利用勾股定理推導(dǎo)出PF⊥BF,PF⊥EF,由此能夠證明PF⊥平面ABED.
(Ⅱ)當(dāng)Q為PA的三等分點(diǎn)(靠近P)時(shí),F(xiàn)Q∥平面PBE.由已知條件推導(dǎo)出FQ∥BP,即可證明FQ∥平面PBE.
(Ⅲ)由PF⊥平面ABED,知PF為三棱錐P-ABE的高,利用等積法能求出點(diǎn)A到平面PBE的距離.
試題解析:
(Ⅰ)連結(jié),由翻折不變性可知, , ,
在中, ,
所以
在圖中,易得,
在中, ,所以
又, 平面, 平面,所以平面.
(Ⅱ) 當(dāng)為的三等分點(diǎn)(靠近)時(shí), 平面.
證明如下:
因?yàn)?/span>, ,所以
又平面, 平面,所以平面.
(注:學(xué)生不寫平面,扣1分)
(Ⅲ) 由(Ⅰ)知平面,所以為三棱錐的高.
設(shè)點(diǎn)到平面的距離為,由等體積法得,
即,又,,
所以,即點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x , x∈(0,2)的值域?yàn)锳,函數(shù)g(x)=log2(x﹣2a)+ (a<1)的定義域?yàn)锽.
(Ⅰ)求集合A,B;
(Ⅱ)若BA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)當(dāng)a=﹣3,m=0時(shí),求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的上、下焦點(diǎn), 是拋物線的焦點(diǎn),點(diǎn)是與在第二象限的交點(diǎn),且.
(1)求橢圓的方程;
(2)與圓相切的直線交橢圓于,
若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生進(jìn)行了三次數(shù)學(xué)測(cè)試,第一次有8名學(xué)生得滿分,第二次有10名學(xué)生得滿分,第三次有12名學(xué)生得滿分,已知前兩次均為滿分的學(xué)生有5名,三次測(cè)試中至少又一次得滿分的學(xué)生有15名.若后兩次均為滿分的學(xué)生至多有名,則的值為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,x∈R.
(1)求證:對(duì)一切實(shí)數(shù)x,f(x)=f(1﹣x)恒為定值.
(2)計(jì)算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于在區(qū)間[m,n]上有意義的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)任意x∈[m,n]均有|f(x)﹣g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個(gè)函數(shù)f1(x)=loga(x﹣3a),與f2(x)=loga (a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上是否是接近的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+),其中為實(shí)數(shù),若 對(duì)x∈R恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某企業(yè)生產(chǎn)的一批產(chǎn)品中有一、二、三等品及次品共四個(gè)等級(jí),1件不同等級(jí)產(chǎn)品的利潤(rùn)(單位:元)如表1,從這批產(chǎn)品中隨機(jī)抽取出1件產(chǎn)品,該件產(chǎn)品為不同等級(jí)的概率如表2.
等級(jí) | 一等品 | 二等品 | 三等品 | 次品 |
| ||||
等級(jí) | 一等品 | 二等品 | 三等品 | 次品 |
利潤(rùn) |
|
表1 表2
若從這批產(chǎn)品中隨機(jī)抽取出的1件產(chǎn)品的平均利潤(rùn)(即數(shù)學(xué)期望)為元.
(1) 設(shè)隨機(jī)抽取1件產(chǎn)品的利潤(rùn)為隨機(jī)變量 ,寫出的分布列并求出的值;
(2) 從這批產(chǎn)品中隨機(jī)取出3件產(chǎn)品,求這3件產(chǎn)品的總利潤(rùn)不低于17元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com