【題目】對于在區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n]均有|f(x)﹣g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則稱f(x)與g(x)在[m,n]上是非接近的.現(xiàn)有兩個函數(shù)f1(x)=loga(x﹣3a),與f2(x)=loga (a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上是否是接近的?

【答案】
(1)解:要使f1(x)與f2(x)有意義,則有 ,

要使f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上都有意義,等價于: ,所以0<a<1


(2)解:f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是接近的,

|f1(x)﹣f(x2)|≤1|loga(x﹣3a)﹣ |≤1|loga[(x﹣3a)(x﹣a)]|≤1a≤(x﹣2a)2﹣a2 對于任意x∈[a+2,a+3]恒成立.

設(shè)h(x)=(x﹣2a)2﹣a2,x∈[a+2,a+3],

且其對稱軸x=2a<2在區(qū)間[a+2,a+3]的左邊,

,

所以當(dāng) ,時,f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是接近的


【解析】(1)要使f1(x)與f2(x)有意義,則有 ,即 ,從而求出a的取值范圍.(2)f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是接近的,
|f1(x)﹣f(x2)|≤1|loga(x﹣3a)﹣ |≤1|loga[(x﹣3a)(x﹣a)]|≤1a≤(x﹣2a)2﹣a2 對于任意x∈[a+2,a+3]恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路 一側(cè)有一塊空地 ,其中 .當(dāng)?shù)卣當(dāng)M在中間開挖一個人工湖△OMN,其中MN都在邊AB上(M,N不與A,B重合,MA,N之間),且MON=30°.

(1)若M在距離A點(diǎn)2 km處,求點(diǎn)MN之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a、b∈R,向量 =(x , 1), =(﹣1,b﹣x),函數(shù)f(x)=a﹣ 是偶函數(shù).
(1)求b的值;
(2)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 分別為邊上的點(diǎn),且,將沿折起至位置(如圖所示),連結(jié),其中.

(Ⅰ) 求證:

(Ⅱ) 在線段上是否存在點(diǎn)使得?若存在,求出點(diǎn)的位置;若不存在,請說明理由.

(Ⅲ) 求點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】CPI 是居民消費(fèi)價格指數(shù)(consumer price index)的簡稱.居民消費(fèi)價格指數(shù),是一個反映居民家庭一般所購買的消費(fèi)品價格水平變動情況的宏觀經(jīng)濟(jì)指標(biāo).下面是根據(jù)統(tǒng)計局發(fā)布的2017年1月一7月的CPI 同比增長與環(huán)比增長漲跌幅數(shù)據(jù)繪制的折線圖.(注:2017 年2月與2016年2月相比較,叫同比;2017 年2 月與2017 年1月相比較,叫環(huán)比)根據(jù)該折線圖,則下列結(jié)論錯誤的是( )

A. 2017 年1月一7月分別與2016年1月一7月相比較,CPI 有漲有跌

B. 2017 年1月一7月CPI 有漲有跌

C. 2017年1月一7月分別與2016年1月一7月相比較,1月CPI 漲幅最大

D. 2017 年2 月一7月CPI 漲跌波動不大,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是橢圓的左、右焦點(diǎn),動點(diǎn)上,連結(jié)并延長點(diǎn),使得,設(shè)點(diǎn)的軌跡為.

(1)求的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn),連結(jié)點(diǎn),若直線的斜率與直線的斜率存在且不為零,證明: 這兩條直線的斜率之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線yx3x2在點(diǎn)P0處的切線l1平行于直線4xy10,且點(diǎn)P0在第三象限.

(1)P0的坐標(biāo);(2)若直線l⊥l1,且l也過切點(diǎn)P0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且.

(1)求函數(shù)的極值;

(2)當(dāng)時,證明:.

查看答案和解析>>

同步練習(xí)冊答案