【題目】語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?(假設數(shù)學成績在頻率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望.
(附參考公式)若,則, .
【答案】(I)語文人,數(shù)學人;(II)分布列見解析, .
【解析】試題分析:(I)根據(jù)正態(tài)分布的知識,可分別求得語文特別優(yōu)秀與數(shù)學特別優(yōu)秀的概率,由此可求得特別優(yōu)秀語文、數(shù)學的人數(shù);(II)首先求得所有可能的取值,然后分別求得相應概率,由此列出分布列,求出期望.
試題解析:(I)語文成績特別優(yōu)秀的概率為,………………1分
數(shù)學成績特別優(yōu)秀的概率為,………………3分
語文成績特別優(yōu)秀人數(shù)為人,
數(shù)學成績特別優(yōu)秀人數(shù)為人.……………………5分
(II)語文數(shù)學兩科都優(yōu)秀的6人,單科優(yōu)秀的有10人,
所有可能的取值為0,1,2,3.
, ,
, ,………………10分
分布列為:
0 | 1 | 2 | 3 | |
………………11分
數(shù)學期望.………………12分
科目:高中數(shù)學 來源: 題型:
【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費,計費方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設計一個算法,根據(jù)輸入的人數(shù),計算應收取的衛(wèi)生費,并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)證明: 為上的增函數(shù);
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點, 是上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為,若為的中點,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線在點處的切線與軸垂直,求的值;
(Ⅱ)若函數(shù)有兩個極值點,求的取值范圍;
(Ⅲ)證明:當時, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.
(1)分別求直線和圓的極坐標方程;
(2)射線(其中)與圓交于兩點,與直線交于點,射線與圓交于兩點,與直線交于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過橢圓: 上一點向軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .
(Ⅰ)求橢圓的方程;
(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
設函數(shù).
(1)求解不等式的解集;
(2)若函數(shù)的定義域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com