【題目】已知函數(shù)).

(Ⅰ)若曲線在點(diǎn)處的切線與軸垂直,求的值;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍;

(Ⅲ)證明:當(dāng)時(shí), .

【答案】(Ⅰ).(Ⅱ).(Ⅲ)見(jiàn)解析.

【解析】試題分析:(Ⅰ)求導(dǎo)函數(shù),利用函數(shù)在點(diǎn)處的切線與軸垂直,可得切線的斜率,從而可求 的值;

(Ⅱ)由(Ⅰ)知,若函數(shù)有兩個(gè)極值點(diǎn),則,即有兩個(gè)不同的根,且的值在根的左、右兩側(cè)符號(hào)相反.

,討論其性質(zhì)即可得到的取值范圍;

(Ⅲ)令),則, .

,討論的性質(zhì)可得以時(shí), ,即時(shí), .

試題解析:((Ⅰ)由.

因?yàn)榍在點(diǎn)處的切線與軸垂直,

所以,解得.

(Ⅱ)由(Ⅰ)知,若函數(shù)有兩個(gè)極值點(diǎn),則,即有兩個(gè)不同的根,且的值在根的左、右兩側(cè)符號(hào)相反.

,則,

所以當(dāng)時(shí), , 單調(diào)遞減;當(dāng)時(shí), , 單調(diào)遞增.

又當(dāng)時(shí), ; 時(shí), ; 時(shí), ; 時(shí), ,

所以.即所求實(shí)數(shù)的取值范圍是.

(Ⅲ)證明:令),則, .

,則 ,

因?yàn)?/span>,所以, , , ,

所以,即時(shí)單調(diào)遞增,

,所以時(shí), ,即函數(shù)時(shí)單調(diào)遞增.

所以時(shí), ,即時(shí), .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表.

地區(qū)用戶滿意度評(píng)分的頻率分布直方圖

地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表

滿意度評(píng)分分組

頻數(shù)

2

8

14

10

6

(1)在答題卡上作出地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):

估計(jì)哪個(gè)地區(qū)的滿意度等級(jí)為不滿意的概率大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角梯形中,是邊長(zhǎng)為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側(cè)

() 求證:平面

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了該農(nóng)產(chǎn)品.以)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量, (單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年“一帶一路”國(guó)際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問(wèn)了80人,經(jīng)過(guò)統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))

無(wú)意愿

有意愿

總計(jì)

40

5

總計(jì)

25

80

(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);

(2)若表中無(wú)意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.

附參考公式及數(shù)據(jù): ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】語(yǔ)文成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:

)如果成績(jī)大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績(jī)?cè)陬l率分布直方圖中各段是均勻分布的)

)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從()中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.

(附參考公式)若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評(píng)分的平均值的大小及方差的大。ú灰缶唧w解答過(guò)程,給出結(jié)論即可);

(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)同”,請(qǐng)根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);

(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來(lái)自城市的概率是多少?

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)是 ,且橢圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過(guò)橢圓的左焦點(diǎn)且斜率為1的直線與橢圓交于兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案