【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計,得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))

無意愿

有意愿

總計

40

5

總計

25

80

(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);

(2)若表中無意愿做志愿者的5個女同學(xué)中,3個是大學(xué)三年級同學(xué),2個是大學(xué)四年級同學(xué).現(xiàn)從這5個同學(xué)中隨機選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個同學(xué)是同年級的概率.

附參考公式及數(shù)據(jù): ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

【答案】(1)答案見解析;(2) .

【解析】試題分析:

(1)由題意結(jié)合所給的表可得,計算的觀測值,則有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān).

(2)由題意列出所有可能的事件,然后結(jié)合古典概型公式可得這2個同學(xué)是同年級的概率是.

試題解析:

(1)由表得

的觀測值,

∴99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān).

(2)記3個大三同學(xué)分別為,2個大四同學(xué)分別為,則從中抽取2個的基本事件有: 共10個,其中抽取的2個是同一年級的基本事件有4個,則所求概率為或直接求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調(diào)研了名女性或名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計

女性

男性

合計

(2)能否在犯錯誤概率不超過的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.

附:

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點,AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點,直線交與, ,求, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統(tǒng)計結(jié)果如表:

?繒r間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r間為小時,求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時,且在一晝夜的時間段中隨機到達(dá),求這兩艘輪船中至少有一艘在停靠該泊位時必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線在點處的切線與軸垂直,求的值;

(Ⅱ)若函數(shù)有兩個極值點,求的取值范圍;

(Ⅲ)證明:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,右頂點為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(0,1)的直線與橢圓交于,兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1是否存在實數(shù)使函數(shù)是奇函數(shù)?并說明理由;

21的條件下,當(dāng), 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,以上頂點和右焦點為直徑端點的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)對于直線和點,橢圓上是否存在不同的兩點關(guān)于直線對稱,且,若存在實數(shù)的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案